Step | Hyp | Ref
| Expression |
1 | | nfv 1619 |
. . . 4
⊢ Ⅎz(x ∈ A →
φ) |
2 | | cbvralf.1 |
. . . . . 6
⊢
ℲxA |
3 | 2 | nfcri 2484 |
. . . . 5
⊢ Ⅎx z ∈ A |
4 | | nfs1v 2106 |
. . . . 5
⊢ Ⅎx[z / x]φ |
5 | 3, 4 | nfim 1813 |
. . . 4
⊢ Ⅎx(z ∈ A →
[z / x]φ) |
6 | | eleq1 2413 |
. . . . 5
⊢ (x = z →
(x ∈
A ↔ z ∈ A)) |
7 | | sbequ12 1919 |
. . . . 5
⊢ (x = z →
(φ ↔ [z / x]φ)) |
8 | 6, 7 | imbi12d 311 |
. . . 4
⊢ (x = z →
((x ∈
A → φ) ↔ (z ∈ A → [z /
x]φ))) |
9 | 1, 5, 8 | cbval 1984 |
. . 3
⊢ (∀x(x ∈ A → φ)
↔ ∀z(z ∈ A →
[z / x]φ)) |
10 | | cbvralf.2 |
. . . . . 6
⊢
ℲyA |
11 | 10 | nfcri 2484 |
. . . . 5
⊢ Ⅎy z ∈ A |
12 | | cbvralf.3 |
. . . . . 6
⊢ Ⅎyφ |
13 | 12 | nfsb 2109 |
. . . . 5
⊢ Ⅎy[z / x]φ |
14 | 11, 13 | nfim 1813 |
. . . 4
⊢ Ⅎy(z ∈ A →
[z / x]φ) |
15 | | nfv 1619 |
. . . 4
⊢ Ⅎz(y ∈ A →
ψ) |
16 | | eleq1 2413 |
. . . . 5
⊢ (z = y →
(z ∈
A ↔ y ∈ A)) |
17 | | sbequ 2060 |
. . . . . 6
⊢ (z = y →
([z / x]φ ↔
[y / x]φ)) |
18 | | cbvralf.4 |
. . . . . . 7
⊢ Ⅎxψ |
19 | | cbvralf.5 |
. . . . . . 7
⊢ (x = y →
(φ ↔ ψ)) |
20 | 18, 19 | sbie 2038 |
. . . . . 6
⊢ ([y / x]φ ↔ ψ) |
21 | 17, 20 | syl6bb 252 |
. . . . 5
⊢ (z = y →
([z / x]φ ↔
ψ)) |
22 | 16, 21 | imbi12d 311 |
. . . 4
⊢ (z = y →
((z ∈
A → [z / x]φ) ↔ (y ∈ A → ψ))) |
23 | 14, 15, 22 | cbval 1984 |
. . 3
⊢ (∀z(z ∈ A → [z /
x]φ) ↔ ∀y(y ∈ A → ψ)) |
24 | 9, 23 | bitri 240 |
. 2
⊢ (∀x(x ∈ A → φ)
↔ ∀y(y ∈ A →
ψ)) |
25 | | df-ral 2620 |
. 2
⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) |
26 | | df-ral 2620 |
. 2
⊢ (∀y ∈ A ψ ↔ ∀y(y ∈ A → ψ)) |
27 | 24, 25, 26 | 3bitr4i 268 |
1
⊢ (∀x ∈ A φ ↔ ∀y ∈ A ψ) |