New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfrex2 | GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
dfrex2 | ⊢ (∃x ∈ A φ ↔ ¬ ∀x ∈ A ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 2624 | . 2 ⊢ (∀x ∈ A ¬ φ ↔ ¬ ∃x ∈ A φ) | |
2 | 1 | con2bii 322 | 1 ⊢ (∃x ∈ A φ ↔ ¬ ∀x ∈ A ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wral 2614 ∃wrex 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-ral 2619 df-rex 2620 |
This theorem is referenced by: nfrexd 2666 nfrex 2669 rexim 2718 r19.30 2756 r19.35 2758 cbvrexf 2830 rspcimedv 2957 sbcrext 3119 cbvrexcsf 3199 r19.9rzv 3644 rexiunxp 4824 rexxpf 4828 disjex 5823 nnc3n3p1 6278 |
Copyright terms: Public domain | W3C validator |