NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfrex2 GIF version

Theorem dfrex2 2628
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
dfrex2 (x A φ ↔ ¬ x A ¬ φ)

Proof of Theorem dfrex2
StepHypRef Expression
1 ralnex 2625 . 2 (x A ¬ φ ↔ ¬ x A φ)
21con2bii 322 1 (x A φ ↔ ¬ x A ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wral 2615  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2620  df-rex 2621
This theorem is referenced by:  nfrexd  2667  nfrex  2670  rexim  2719  r19.30  2757  r19.35  2759  cbvrexf  2831  rspcimedv  2958  sbcrext  3120  cbvrexcsf  3200  r19.9rzv  3645  rexiunxp  4825  rexxpf  4829  disjex  5824  nnc3n3p1  6279
  Copyright terms: Public domain W3C validator