New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfrex2 | GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
dfrex2 | ⊢ (∃x ∈ A φ ↔ ¬ ∀x ∈ A ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 2625 | . 2 ⊢ (∀x ∈ A ¬ φ ↔ ¬ ∃x ∈ A φ) | |
2 | 1 | con2bii 322 | 1 ⊢ (∃x ∈ A φ ↔ ¬ ∀x ∈ A ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wral 2615 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-ral 2620 df-rex 2621 |
This theorem is referenced by: nfrexd 2667 nfrex 2670 rexim 2719 r19.30 2757 r19.35 2759 cbvrexf 2831 rspcimedv 2958 sbcrext 3120 cbvrexcsf 3200 r19.9rzv 3645 rexiunxp 4825 rexxpf 4829 disjex 5824 nnc3n3p1 6279 |
Copyright terms: Public domain | W3C validator |