New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbvrmov GIF version

Theorem cbvrmov 2838
 Description: Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
cbvralv.1 (x = y → (φψ))
Assertion
Ref Expression
cbvrmov (∃*x A φ∃*y A ψ)
Distinct variable groups:   x,A   y,A   φ,y   ψ,x
Allowed substitution hints:   φ(x)   ψ(y)

Proof of Theorem cbvrmov
StepHypRef Expression
1 nfv 1619 . 2 yφ
2 nfv 1619 . 2 xψ
3 cbvralv.1 . 2 (x = y → (φψ))
41, 2, 3cbvrmo 2834 1 (∃*x A φ∃*y A ψ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176  ∃*wrmo 2617 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator