New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvrmov | GIF version |
Description: Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
cbvralv.1 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvrmov | ⊢ (∃*x ∈ A φ ↔ ∃*y ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎyφ | |
2 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
3 | cbvralv.1 | . 2 ⊢ (x = y → (φ ↔ ψ)) | |
4 | 1, 2, 3 | cbvrmo 2835 | 1 ⊢ (∃*x ∈ A φ ↔ ∃*y ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃*wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |