| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > clel4 | GIF version | ||
| Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| clel4.1 | ⊢ B ∈ V |
| Ref | Expression |
|---|---|
| clel4 | ⊢ (A ∈ B ↔ ∀x(x = B → A ∈ x)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clel4.1 | . . 3 ⊢ B ∈ V | |
| 2 | eleq2 2414 | . . 3 ⊢ (x = B → (A ∈ x ↔ A ∈ B)) | |
| 3 | 1, 2 | ceqsalv 2886 | . 2 ⊢ (∀x(x = B → A ∈ x) ↔ A ∈ B) |
| 4 | 3 | bicomi 193 | 1 ⊢ (A ∈ B ↔ ∀x(x = B → A ∈ x)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
| This theorem is referenced by: intpr 3960 |
| Copyright terms: Public domain | W3C validator |