New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spcegf | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.) |
Ref | Expression |
---|---|
spcgf.1 | ⊢ ℲxA |
spcgf.2 | ⊢ Ⅎxψ |
spcgf.3 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
spcegf | ⊢ (A ∈ V → (ψ → ∃xφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcgf.1 | . . . 4 ⊢ ℲxA | |
2 | spcgf.2 | . . . . 5 ⊢ Ⅎxψ | |
3 | 2 | nfn 1793 | . . . 4 ⊢ Ⅎx ¬ ψ |
4 | spcgf.3 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
5 | 4 | notbid 285 | . . . 4 ⊢ (x = A → (¬ φ ↔ ¬ ψ)) |
6 | 1, 3, 5 | spcgf 2935 | . . 3 ⊢ (A ∈ V → (∀x ¬ φ → ¬ ψ)) |
7 | 6 | con2d 107 | . 2 ⊢ (A ∈ V → (ψ → ¬ ∀x ¬ φ)) |
8 | df-ex 1542 | . 2 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
9 | 7, 8 | syl6ibr 218 | 1 ⊢ (A ∈ V → (ψ → ∃xφ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: spcegv 2941 rspce 2951 |
Copyright terms: Public domain | W3C validator |