New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spc3gv | GIF version |
Description: Specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
Ref | Expression |
---|---|
spc3egv.1 | ⊢ ((x = A ∧ y = B ∧ z = C) → (φ ↔ ψ)) |
Ref | Expression |
---|---|
spc3gv | ⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ X) → (∀x∀y∀zφ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc3egv.1 | . . . . 5 ⊢ ((x = A ∧ y = B ∧ z = C) → (φ ↔ ψ)) | |
2 | 1 | notbid 285 | . . . 4 ⊢ ((x = A ∧ y = B ∧ z = C) → (¬ φ ↔ ¬ ψ)) |
3 | 2 | spc3egv 2944 | . . 3 ⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ X) → (¬ ψ → ∃x∃y∃z ¬ φ)) |
4 | exnal 1574 | . . . . . . 7 ⊢ (∃z ¬ φ ↔ ¬ ∀zφ) | |
5 | 4 | exbii 1582 | . . . . . 6 ⊢ (∃y∃z ¬ φ ↔ ∃y ¬ ∀zφ) |
6 | exnal 1574 | . . . . . 6 ⊢ (∃y ¬ ∀zφ ↔ ¬ ∀y∀zφ) | |
7 | 5, 6 | bitri 240 | . . . . 5 ⊢ (∃y∃z ¬ φ ↔ ¬ ∀y∀zφ) |
8 | 7 | exbii 1582 | . . . 4 ⊢ (∃x∃y∃z ¬ φ ↔ ∃x ¬ ∀y∀zφ) |
9 | exnal 1574 | . . . 4 ⊢ (∃x ¬ ∀y∀zφ ↔ ¬ ∀x∀y∀zφ) | |
10 | 8, 9 | bitr2i 241 | . . 3 ⊢ (¬ ∀x∀y∀zφ ↔ ∃x∃y∃z ¬ φ) |
11 | 3, 10 | syl6ibr 218 | . 2 ⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ X) → (¬ ψ → ¬ ∀x∀y∀zφ)) |
12 | 11 | con4d 97 | 1 ⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ X) → (∀x∀y∀zφ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ w3a 934 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: fununiq 5518 |
Copyright terms: Public domain | W3C validator |