New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csb2 | GIF version |
Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that x can be free in B but cannot occur in A. (Contributed by NM, 2-Dec-2013.) |
Ref | Expression |
---|---|
csb2 | ⊢ [A / x]B = {y ∣ ∃x(x = A ∧ y ∈ B)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3138 | . 2 ⊢ [A / x]B = {y ∣ [̣A / x]̣y ∈ B} | |
2 | sbc5 3071 | . . 3 ⊢ ([̣A / x]̣y ∈ B ↔ ∃x(x = A ∧ y ∈ B)) | |
3 | 2 | abbii 2466 | . 2 ⊢ {y ∣ [̣A / x]̣y ∈ B} = {y ∣ ∃x(x = A ∧ y ∈ B)} |
4 | 1, 3 | eqtri 2373 | 1 ⊢ [A / x]B = {y ∣ ∃x(x = A ∧ y ∈ B)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |