| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > csbiedf | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbiedf.1 | ⊢ Ⅎxφ |
| csbiedf.2 | ⊢ (φ → ℲxC) |
| csbiedf.3 | ⊢ (φ → A ∈ V) |
| csbiedf.4 | ⊢ ((φ ∧ x = A) → B = C) |
| Ref | Expression |
|---|---|
| csbiedf | ⊢ (φ → [A / x]B = C) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbiedf.1 | . . 3 ⊢ Ⅎxφ | |
| 2 | csbiedf.4 | . . . 4 ⊢ ((φ ∧ x = A) → B = C) | |
| 3 | 2 | ex 423 | . . 3 ⊢ (φ → (x = A → B = C)) |
| 4 | 1, 3 | alrimi 1765 | . 2 ⊢ (φ → ∀x(x = A → B = C)) |
| 5 | csbiedf.3 | . . 3 ⊢ (φ → A ∈ V) | |
| 6 | csbiedf.2 | . . 3 ⊢ (φ → ℲxC) | |
| 7 | csbiebt 3173 | . . 3 ⊢ ((A ∈ V ∧ ℲxC) → (∀x(x = A → B = C) ↔ [A / x]B = C)) | |
| 8 | 5, 6, 7 | syl2anc 642 | . 2 ⊢ (φ → (∀x(x = A → B = C) ↔ [A / x]B = C)) |
| 9 | 4, 8 | mpbid 201 | 1 ⊢ (φ → [A / x]B = C) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 [csb 3137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
| This theorem is referenced by: csbied 3179 csbie2t 3181 |
| Copyright terms: Public domain | W3C validator |