Step | Hyp | Ref
| Expression |
1 | | dffun2 5120 |
. . . 4
⊢ (Fun 2nd
↔ ∀x∀y∀z((x2nd y ∧ x2nd z) → y =
z)) |
2 | | vex 2863 |
. . . . . . . . 9
⊢ y ∈
V |
3 | 2 | br2nd 4860 |
. . . . . . . 8
⊢ (x2nd y ↔ ∃w x = 〈w, y〉) |
4 | | vex 2863 |
. . . . . . . . 9
⊢ z ∈
V |
5 | 4 | br2nd 4860 |
. . . . . . . 8
⊢ (x2nd z ↔ ∃t x = 〈t, z〉) |
6 | 3, 5 | anbi12i 678 |
. . . . . . 7
⊢ ((x2nd y ∧ x2nd z) ↔ (∃w x = 〈w, y〉 ∧ ∃t x = 〈t, z〉)) |
7 | | eeanv 1913 |
. . . . . . 7
⊢ (∃w∃t(x = 〈w, y〉 ∧ x = 〈t, z〉) ↔ (∃w x = 〈w, y〉 ∧ ∃t x = 〈t, z〉)) |
8 | 6, 7 | bitr4i 243 |
. . . . . 6
⊢ ((x2nd y ∧ x2nd z) ↔ ∃w∃t(x = 〈w, y〉 ∧ x = 〈t, z〉)) |
9 | | eqtr2 2371 |
. . . . . . . 8
⊢ ((x = 〈w, y〉 ∧ x = 〈t, z〉) → 〈w, y〉 = 〈t, z〉) |
10 | | opth 4603 |
. . . . . . . . 9
⊢ (〈w, y〉 = 〈t, z〉 ↔
(w = t
∧ y =
z)) |
11 | 10 | simprbi 450 |
. . . . . . . 8
⊢ (〈w, y〉 = 〈t, z〉 → y = z) |
12 | 9, 11 | syl 15 |
. . . . . . 7
⊢ ((x = 〈w, y〉 ∧ x = 〈t, z〉) → y =
z) |
13 | 12 | exlimivv 1635 |
. . . . . 6
⊢ (∃w∃t(x = 〈w, y〉 ∧ x = 〈t, z〉) → y =
z) |
14 | 8, 13 | sylbi 187 |
. . . . 5
⊢ ((x2nd y ∧ x2nd z) → y =
z) |
15 | 14 | gen2 1547 |
. . . 4
⊢ ∀y∀z((x2nd y ∧ x2nd z) → y =
z) |
16 | 1, 15 | mpgbir 1550 |
. . 3
⊢ Fun
2nd |
17 | | eqv 3566 |
. . . 4
⊢ (dom 2nd
= V ↔ ∀x x ∈ dom 2nd ) |
18 | | opeq 4620 |
. . . . 5
⊢ x = 〈 Proj1 x, Proj2 x〉 |
19 | | eqid 2353 |
. . . . . . 7
⊢ Proj2 x = Proj2 x |
20 | | vex 2863 |
. . . . . . . . 9
⊢ x ∈
V |
21 | 20 | proj1ex 4594 |
. . . . . . . 8
⊢ Proj1 x ∈ V |
22 | 20 | proj2ex 4595 |
. . . . . . . 8
⊢ Proj2 x ∈ V |
23 | 21, 22 | opbr2nd 5503 |
. . . . . . 7
⊢ (〈 Proj1 x, Proj2 x〉2nd
Proj2 x
↔ Proj2 x = Proj2 x) |
24 | 19, 23 | mpbir 200 |
. . . . . 6
⊢ 〈 Proj1 x, Proj2 x〉2nd
Proj2 x |
25 | | breldm 4912 |
. . . . . 6
⊢ (〈 Proj1 x, Proj2 x〉2nd
Proj2 x
→ 〈 Proj1
x, Proj2
x〉
∈ dom 2nd ) |
26 | 24, 25 | ax-mp 5 |
. . . . 5
⊢ 〈 Proj1 x, Proj2 x〉 ∈ dom 2nd |
27 | 18, 26 | eqeltri 2423 |
. . . 4
⊢ x ∈ dom
2nd |
28 | 17, 27 | mpgbir 1550 |
. . 3
⊢ dom 2nd
= V |
29 | | df-fn 4791 |
. . 3
⊢ (2nd Fn
V ↔ (Fun 2nd ∧ dom
2nd = V)) |
30 | 16, 28, 29 | mpbir2an 886 |
. 2
⊢ 2nd Fn
V |
31 | | eqv 3566 |
. . 3
⊢ (ran 2nd
= V ↔ ∀x x ∈ ran 2nd ) |
32 | | equid 1676 |
. . . . 5
⊢ x = x |
33 | 20, 20 | opbr2nd 5503 |
. . . . 5
⊢ (〈x, x〉2nd
x ↔ x = x) |
34 | 32, 33 | mpbir 200 |
. . . 4
⊢ 〈x, x〉2nd
x |
35 | | brelrn 4961 |
. . . 4
⊢ (〈x, x〉2nd
x → x ∈ ran
2nd ) |
36 | 34, 35 | ax-mp 5 |
. . 3
⊢ x ∈ ran
2nd |
37 | 31, 36 | mpgbir 1550 |
. 2
⊢ ran 2nd
= V |
38 | | df-fo 4794 |
. 2
⊢ (2nd
:V–onto→V ↔
(2nd Fn V ∧ ran 2nd =
V)) |
39 | 30, 37, 38 | mpbir2an 886 |
1
⊢ 2nd
:V–onto→V |