New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > forn | GIF version |
Description: The codomain of an onto function is its range. (Contributed by set.mm contributors, 3-Aug-1994.) |
Ref | Expression |
---|---|
forn | ⊢ (F:A–onto→B → ran F = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 4793 | . 2 ⊢ (F:A–onto→B ↔ (F Fn A ∧ ran F = B)) | |
2 | 1 | simprbi 450 | 1 ⊢ (F:A–onto→B → ran F = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ran crn 4773 Fn wfn 4776 –onto→wfo 4779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-fo 4793 |
This theorem is referenced by: dffo2 5273 foima 5274 fodmrnu 5277 f1imacnv 5302 foimacnv 5303 resdif 5306 f1ococnv2 5309 dffo4 5423 isoini 5497 bren 6030 enpw1 6062 enmap1lem5 6073 nenpw1pwlem2 6085 ncdisjun 6136 1cnc 6139 sbthlem3 6205 |
Copyright terms: Public domain | W3C validator |