NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  forn GIF version

Theorem forn 5273
Description: The codomain of an onto function is its range. (Contributed by set.mm contributors, 3-Aug-1994.)
Assertion
Ref Expression
forn (F:AontoB → ran F = B)

Proof of Theorem forn
StepHypRef Expression
1 df-fo 4794 . 2 (F:AontoB ↔ (F Fn A ran F = B))
21simprbi 450 1 (F:AontoB → ran F = B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  ran crn 4774   Fn wfn 4777  ontowfo 4780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-fo 4794
This theorem is referenced by:  dffo2  5274  foima  5275  fodmrnu  5278  f1imacnv  5303  foimacnv  5304  resdif  5307  f1ococnv2  5310  dffo4  5424  isoini  5498  bren  6031  enpw1  6063  enmap1lem5  6074  nenpw1pwlem2  6086  ncdisjun  6137  1cnc  6140  sbthlem3  6206
  Copyright terms: Public domain W3C validator