New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > forn | GIF version |
Description: The codomain of an onto function is its range. (Contributed by set.mm contributors, 3-Aug-1994.) |
Ref | Expression |
---|---|
forn | ⊢ (F:A–onto→B → ran F = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 4794 | . 2 ⊢ (F:A–onto→B ↔ (F Fn A ∧ ran F = B)) | |
2 | 1 | simprbi 450 | 1 ⊢ (F:A–onto→B → ran F = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ran crn 4774 Fn wfn 4777 –onto→wfo 4780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-fo 4794 |
This theorem is referenced by: dffo2 5274 foima 5275 fodmrnu 5278 f1imacnv 5303 foimacnv 5304 resdif 5307 f1ococnv2 5310 dffo4 5424 isoini 5498 bren 6031 enpw1 6063 enmap1lem5 6074 nenpw1pwlem2 6086 ncdisjun 6137 1cnc 6140 sbthlem3 6206 |
Copyright terms: Public domain | W3C validator |