NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  1stfo GIF version

Theorem 1stfo 5506
Description: 1st is a mapping from the universe onto the universe. (Contributed by SF, 12-Feb-2015.) (Revised by Scott Fenton, 17-Apr-2021.)
Assertion
Ref Expression
1stfo 1st :V–onto→V

Proof of Theorem 1stfo
Dummy variables x y z w t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 5120 . . . 4 (Fun 1stxyz((x1st y x1st z) → y = z))
2 vex 2863 . . . . . . . . 9 y V
32br1st 4859 . . . . . . . 8 (x1st yw x = y, w)
4 vex 2863 . . . . . . . . 9 z V
54br1st 4859 . . . . . . . 8 (x1st zt x = z, t)
63, 5anbi12i 678 . . . . . . 7 ((x1st y x1st z) ↔ (w x = y, w t x = z, t))
7 eeanv 1913 . . . . . . 7 (wt(x = y, w x = z, t) ↔ (w x = y, w t x = z, t))
86, 7bitr4i 243 . . . . . 6 ((x1st y x1st z) ↔ wt(x = y, w x = z, t))
9 eqtr2 2371 . . . . . . . 8 ((x = y, w x = z, t) → y, w = z, t)
10 opth 4603 . . . . . . . . 9 (y, w = z, t ↔ (y = z w = t))
1110simplbi 446 . . . . . . . 8 (y, w = z, ty = z)
129, 11syl 15 . . . . . . 7 ((x = y, w x = z, t) → y = z)
1312exlimivv 1635 . . . . . 6 (wt(x = y, w x = z, t) → y = z)
148, 13sylbi 187 . . . . 5 ((x1st y x1st z) → y = z)
1514gen2 1547 . . . 4 yz((x1st y x1st z) → y = z)
161, 15mpgbir 1550 . . 3 Fun 1st
17 eqv 3566 . . . 4 (dom 1st = V ↔ x x dom 1st )
18 opeq 4620 . . . . 5 x = Proj1 x, Proj2 x
19 eqid 2353 . . . . . . 7 Proj1 x = Proj1 x
20 vex 2863 . . . . . . . . 9 x V
2120proj1ex 4594 . . . . . . . 8 Proj1 x V
2220proj2ex 4595 . . . . . . . 8 Proj2 x V
2321, 22opbr1st 5502 . . . . . . 7 ( Proj1 x, Proj2 x1st Proj1 x Proj1 x = Proj1 x)
2419, 23mpbir 200 . . . . . 6 Proj1 x, Proj2 x1st Proj1 x
25 breldm 4912 . . . . . 6 ( Proj1 x, Proj2 x1st Proj1 x Proj1 x, Proj2 x dom 1st )
2624, 25ax-mp 5 . . . . 5 Proj1 x, Proj2 x dom 1st
2718, 26eqeltri 2423 . . . 4 x dom 1st
2817, 27mpgbir 1550 . . 3 dom 1st = V
29 df-fn 4791 . . 3 (1st Fn V ↔ (Fun 1st dom 1st = V))
3016, 28, 29mpbir2an 886 . 2 1st Fn V
31 eqv 3566 . . 3 (ran 1st = V ↔ x x ran 1st )
32 eqid 2353 . . . . 5 x = x
3320, 20opbr1st 5502 . . . . 5 (x, x1st xx = x)
3432, 33mpbir 200 . . . 4 x, x1st x
35 brelrn 4961 . . . 4 (x, x1st xx ran 1st )
3634, 35ax-mp 5 . . 3 x ran 1st
3731, 36mpgbir 1550 . 2 ran 1st = V
38 df-fo 4794 . 2 (1st :V–onto→V ↔ (1st Fn V ran 1st = V))
3930, 37, 38mpbir2an 886 1 1st :V–onto→V
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cop 4562   Proj1 cproj1 4564   Proj2 cproj2 4565   class class class wbr 4640  1st c1st 4718  dom cdm 4773  ran crn 4774  Fun wfun 4776   Fn wfn 4777  ontowfo 4780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-fo 4794
This theorem is referenced by:  opfv1st  5515  fundmen  6044  xpassen  6058
  Copyright terms: Public domain W3C validator