NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dffo2 GIF version

Theorem dffo2 5274
Description: Alternate definition of an onto function. (Contributed by set.mm contributors, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (F:AontoB ↔ (F:A–→B ran F = B))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 5270 . . 3 (F:AontoBF:A–→B)
2 forn 5273 . . 3 (F:AontoB → ran F = B)
31, 2jca 518 . 2 (F:AontoB → (F:A–→B ran F = B))
4 ffn 5224 . . 3 (F:A–→BF Fn A)
5 df-fo 4794 . . . 4 (F:AontoB ↔ (F Fn A ran F = B))
65biimpri 197 . . 3 ((F Fn A ran F = B) → F:AontoB)
74, 6sylan 457 . 2 ((F:A–→B ran F = B) → F:AontoB)
83, 7impbii 180 1 (F:AontoB ↔ (F:A–→B ran F = B))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   = wceq 1642  ran crn 4774   Fn wfn 4777  –→wf 4778  ontowfo 4780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-f 4792  df-fo 4794
This theorem is referenced by:  foco  5280  foconst  5281  dff1o5  5296  dffo3  5423
  Copyright terms: Public domain W3C validator