| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dffo2 | GIF version | ||
| Description: Alternate definition of an onto function. (Contributed by set.mm contributors, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| dffo2 | ⊢ (F:A–onto→B ↔ (F:A–→B ∧ ran F = B)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5270 | . . 3 ⊢ (F:A–onto→B → F:A–→B) | |
| 2 | forn 5273 | . . 3 ⊢ (F:A–onto→B → ran F = B) | |
| 3 | 1, 2 | jca 518 | . 2 ⊢ (F:A–onto→B → (F:A–→B ∧ ran F = B)) |
| 4 | ffn 5224 | . . 3 ⊢ (F:A–→B → F Fn A) | |
| 5 | df-fo 4794 | . . . 4 ⊢ (F:A–onto→B ↔ (F Fn A ∧ ran F = B)) | |
| 6 | 5 | biimpri 197 | . . 3 ⊢ ((F Fn A ∧ ran F = B) → F:A–onto→B) |
| 7 | 4, 6 | sylan 457 | . 2 ⊢ ((F:A–→B ∧ ran F = B) → F:A–onto→B) |
| 8 | 3, 7 | impbii 180 | 1 ⊢ (F:A–onto→B ↔ (F:A–→B ∧ ran F = B)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ran crn 4774 Fn wfn 4777 –→wf 4778 –onto→wfo 4780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-f 4792 df-fo 4794 |
| This theorem is referenced by: foco 5280 foconst 5281 dff1o5 5296 dffo3 5423 |
| Copyright terms: Public domain | W3C validator |