NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fconst5 GIF version

Theorem fconst5 5456
Description: Two ways to express that a function is constant. (Contributed by set.mm contributors, 27-Nov-2007.)
Assertion
Ref Expression
fconst5 ((F Fn A A) → (F = (A × {B}) ↔ ran F = {B}))

Proof of Theorem fconst5
StepHypRef Expression
1 rneq 4957 . . . 4 (F = (A × {B}) → ran F = ran (A × {B}))
2 rnxp 5052 . . . . 5 (A → ran (A × {B}) = {B})
32eqeq2d 2364 . . . 4 (A → (ran F = ran (A × {B}) ↔ ran F = {B}))
41, 3syl5ib 210 . . 3 (A → (F = (A × {B}) → ran F = {B}))
54adantl 452 . 2 ((F Fn A A) → (F = (A × {B}) → ran F = {B}))
6 df-fo 4794 . . . . . . 7 (F:Aonto→{B} ↔ (F Fn A ran F = {B}))
7 fof 5270 . . . . . . 7 (F:Aonto→{B} → F:A–→{B})
86, 7sylbir 204 . . . . . 6 ((F Fn A ran F = {B}) → F:A–→{B})
9 fconst2g 5453 . . . . . 6 (B V → (F:A–→{B} ↔ F = (A × {B})))
108, 9syl5ib 210 . . . . 5 (B V → ((F Fn A ran F = {B}) → F = (A × {B})))
1110exp3a 425 . . . 4 (B V → (F Fn A → (ran F = {B} → F = (A × {B}))))
1211adantrd 454 . . 3 (B V → ((F Fn A A) → (ran F = {B} → F = (A × {B}))))
13 rneq0 4971 . . . . . . 7 (F = ↔ ran F = )
1413a1i 10 . . . . . 6 B V → (F = ↔ ran F = ))
15 snprc 3789 . . . . . . . . . 10 B V ↔ {B} = )
1615biimpi 186 . . . . . . . . 9 B V → {B} = )
1716xpeq2d 4809 . . . . . . . 8 B V → (A × {B}) = (A × ))
18 xp0 5045 . . . . . . . 8 (A × ) =
1917, 18syl6eq 2401 . . . . . . 7 B V → (A × {B}) = )
2019eqeq2d 2364 . . . . . 6 B V → (F = (A × {B}) ↔ F = ))
2116eqeq2d 2364 . . . . . 6 B V → (ran F = {B} ↔ ran F = ))
2214, 20, 213bitr4d 276 . . . . 5 B V → (F = (A × {B}) ↔ ran F = {B}))
2322biimprd 214 . . . 4 B V → (ran F = {B} → F = (A × {B})))
2423a1d 22 . . 3 B V → ((F Fn A A) → (ran F = {B} → F = (A × {B}))))
2512, 24pm2.61i 156 . 2 ((F Fn A A) → (ran F = {B} → F = (A × {B})))
265, 25impbid 183 1 ((F Fn A A) → (F = (A × {B}) ↔ ran F = {B}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wne 2517  Vcvv 2860  c0 3551  {csn 3738   × cxp 4771  ran crn 4774   Fn wfn 4777  –→wf 4778  ontowfo 4780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-f 4792  df-fo 4794  df-fv 4796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator