New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fconst5 | GIF version |
Description: Two ways to express that a function is constant. (Contributed by set.mm contributors, 27-Nov-2007.) |
Ref | Expression |
---|---|
fconst5 | ⊢ ((F Fn A ∧ A ≠ ∅) → (F = (A × {B}) ↔ ran F = {B})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneq 4957 | . . . 4 ⊢ (F = (A × {B}) → ran F = ran (A × {B})) | |
2 | rnxp 5052 | . . . . 5 ⊢ (A ≠ ∅ → ran (A × {B}) = {B}) | |
3 | 2 | eqeq2d 2364 | . . . 4 ⊢ (A ≠ ∅ → (ran F = ran (A × {B}) ↔ ran F = {B})) |
4 | 1, 3 | syl5ib 210 | . . 3 ⊢ (A ≠ ∅ → (F = (A × {B}) → ran F = {B})) |
5 | 4 | adantl 452 | . 2 ⊢ ((F Fn A ∧ A ≠ ∅) → (F = (A × {B}) → ran F = {B})) |
6 | df-fo 4794 | . . . . . . 7 ⊢ (F:A–onto→{B} ↔ (F Fn A ∧ ran F = {B})) | |
7 | fof 5270 | . . . . . . 7 ⊢ (F:A–onto→{B} → F:A–→{B}) | |
8 | 6, 7 | sylbir 204 | . . . . . 6 ⊢ ((F Fn A ∧ ran F = {B}) → F:A–→{B}) |
9 | fconst2g 5453 | . . . . . 6 ⊢ (B ∈ V → (F:A–→{B} ↔ F = (A × {B}))) | |
10 | 8, 9 | syl5ib 210 | . . . . 5 ⊢ (B ∈ V → ((F Fn A ∧ ran F = {B}) → F = (A × {B}))) |
11 | 10 | exp3a 425 | . . . 4 ⊢ (B ∈ V → (F Fn A → (ran F = {B} → F = (A × {B})))) |
12 | 11 | adantrd 454 | . . 3 ⊢ (B ∈ V → ((F Fn A ∧ A ≠ ∅) → (ran F = {B} → F = (A × {B})))) |
13 | rneq0 4971 | . . . . . . 7 ⊢ (F = ∅ ↔ ran F = ∅) | |
14 | 13 | a1i 10 | . . . . . 6 ⊢ (¬ B ∈ V → (F = ∅ ↔ ran F = ∅)) |
15 | snprc 3789 | . . . . . . . . . 10 ⊢ (¬ B ∈ V ↔ {B} = ∅) | |
16 | 15 | biimpi 186 | . . . . . . . . 9 ⊢ (¬ B ∈ V → {B} = ∅) |
17 | 16 | xpeq2d 4809 | . . . . . . . 8 ⊢ (¬ B ∈ V → (A × {B}) = (A × ∅)) |
18 | xp0 5045 | . . . . . . . 8 ⊢ (A × ∅) = ∅ | |
19 | 17, 18 | syl6eq 2401 | . . . . . . 7 ⊢ (¬ B ∈ V → (A × {B}) = ∅) |
20 | 19 | eqeq2d 2364 | . . . . . 6 ⊢ (¬ B ∈ V → (F = (A × {B}) ↔ F = ∅)) |
21 | 16 | eqeq2d 2364 | . . . . . 6 ⊢ (¬ B ∈ V → (ran F = {B} ↔ ran F = ∅)) |
22 | 14, 20, 21 | 3bitr4d 276 | . . . . 5 ⊢ (¬ B ∈ V → (F = (A × {B}) ↔ ran F = {B})) |
23 | 22 | biimprd 214 | . . . 4 ⊢ (¬ B ∈ V → (ran F = {B} → F = (A × {B}))) |
24 | 23 | a1d 22 | . . 3 ⊢ (¬ B ∈ V → ((F Fn A ∧ A ≠ ∅) → (ran F = {B} → F = (A × {B})))) |
25 | 12, 24 | pm2.61i 156 | . 2 ⊢ ((F Fn A ∧ A ≠ ∅) → (ran F = {B} → F = (A × {B}))) |
26 | 5, 25 | impbid 183 | 1 ⊢ ((F Fn A ∧ A ≠ ∅) → (F = (A × {B}) ↔ ran F = {B})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 Vcvv 2860 ∅c0 3551 {csn 3738 × cxp 4771 ran crn 4774 Fn wfn 4777 –→wf 4778 –onto→wfo 4780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 df-fo 4794 df-fv 4796 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |