NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  isoeq4 GIF version

Theorem isoeq4 5486
Description: Equality theorem for isomorphisms. (Contributed by set.mm contributors, 17-May-2004.)
Assertion
Ref Expression
isoeq4 (A = C → (H Isom R, S (A, B) ↔ H Isom R, S (C, B)))

Proof of Theorem isoeq4
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 5283 . . 3 (A = C → (H:A1-1-ontoBH:C1-1-ontoB))
2 raleq 2808 . . . 4 (A = C → (y A (xRy ↔ (Hx)S(Hy)) ↔ y C (xRy ↔ (Hx)S(Hy))))
32raleqbi1dv 2816 . . 3 (A = C → (x A y A (xRy ↔ (Hx)S(Hy)) ↔ x C y C (xRy ↔ (Hx)S(Hy))))
41, 3anbi12d 691 . 2 (A = C → ((H:A1-1-ontoB x A y A (xRy ↔ (Hx)S(Hy))) ↔ (H:C1-1-ontoB x C y C (xRy ↔ (Hx)S(Hy)))))
5 df-iso 4797 . 2 (H Isom R, S (A, B) ↔ (H:A1-1-ontoB x A y A (xRy ↔ (Hx)S(Hy))))
6 df-iso 4797 . 2 (H Isom R, S (C, B) ↔ (H:C1-1-ontoB x C y C (xRy ↔ (Hx)S(Hy))))
74, 5, 63bitr4g 279 1 (A = C → (H Isom R, S (A, B) ↔ H Isom R, S (C, B)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642  wral 2615   class class class wbr 4640  1-1-ontowf1o 4781  cfv 4782   Isom wiso 4783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-iso 4797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator