![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > isoeq4 | GIF version |
Description: Equality theorem for isomorphisms. (Contributed by set.mm contributors, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq4 | ⊢ (A = C → (H Isom R, S (A, B) ↔ H Isom R, S (C, B))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 5282 | . . 3 ⊢ (A = C → (H:A–1-1-onto→B ↔ H:C–1-1-onto→B)) | |
2 | raleq 2807 | . . . 4 ⊢ (A = C → (∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)) ↔ ∀y ∈ C (xRy ↔ (H ‘x)S(H ‘y)))) | |
3 | 2 | raleqbi1dv 2815 | . . 3 ⊢ (A = C → (∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)) ↔ ∀x ∈ C ∀y ∈ C (xRy ↔ (H ‘x)S(H ‘y)))) |
4 | 1, 3 | anbi12d 691 | . 2 ⊢ (A = C → ((H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y))) ↔ (H:C–1-1-onto→B ∧ ∀x ∈ C ∀y ∈ C (xRy ↔ (H ‘x)S(H ‘y))))) |
5 | df-iso 4796 | . 2 ⊢ (H Isom R, S (A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)))) | |
6 | df-iso 4796 | . 2 ⊢ (H Isom R, S (C, B) ↔ (H:C–1-1-onto→B ∧ ∀x ∈ C ∀y ∈ C (xRy ↔ (H ‘x)S(H ‘y)))) | |
7 | 4, 5, 6 | 3bitr4g 279 | 1 ⊢ (A = C → (H Isom R, S (A, B) ↔ H Isom R, S (C, B))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∀wral 2614 class class class wbr 4639 –1-1-onto→wf1o 4780 ‘cfv 4781 Isom wiso 4782 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-iso 4796 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |