New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > isoeq3 | GIF version |
Description: Equality theorem for isomorphisms. (Contributed by set.mm contributors, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq3 | ⊢ (S = T → (H Isom R, S (A, B) ↔ H Isom R, T (A, B))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 4642 | . . . . 5 ⊢ (S = T → ((H ‘x)S(H ‘y) ↔ (H ‘x)T(H ‘y))) | |
2 | 1 | bibi2d 309 | . . . 4 ⊢ (S = T → ((xRy ↔ (H ‘x)S(H ‘y)) ↔ (xRy ↔ (H ‘x)T(H ‘y)))) |
3 | 2 | 2ralbidv 2657 | . . 3 ⊢ (S = T → (∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)) ↔ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)T(H ‘y)))) |
4 | 3 | anbi2d 684 | . 2 ⊢ (S = T → ((H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y))) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)T(H ‘y))))) |
5 | df-iso 4797 | . 2 ⊢ (H Isom R, S (A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)))) | |
6 | df-iso 4797 | . 2 ⊢ (H Isom R, T (A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)T(H ‘y)))) | |
7 | 4, 5, 6 | 3bitr4g 279 | 1 ⊢ (S = T → (H Isom R, S (A, B) ↔ H Isom R, T (A, B))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∀wral 2615 class class class wbr 4640 –1-1-onto→wf1o 4781 ‘cfv 4782 Isom wiso 4783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-cleq 2346 df-clel 2349 df-ral 2620 df-br 4641 df-iso 4797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |