NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfral2 GIF version

Theorem dfral2 2626
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
dfral2 (x A φ ↔ ¬ x A ¬ φ)

Proof of Theorem dfral2
StepHypRef Expression
1 rexnal 2625 . 2 (x A ¬ φ ↔ ¬ x A φ)
21con2bii 322 1 (x A φ ↔ ¬ x A ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wral 2614  wrex 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2619  df-rex 2620
This theorem is referenced by:  dfpss4  3888  ncfinraiselem2  4480  evenodddisjlem1  4515  nnadjoinlem1  4519  nnpweqlem1  4522  tfinnnlem1  4533  spfinex  4537  extex  5915
  Copyright terms: Public domain W3C validator