Step | Hyp | Ref
| Expression |
1 | | df-ext 5908 |
. . 3
⊢ Ext = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y)} |
2 | | vex 2863 |
. . . . . . 7
⊢ r ∈
V |
3 | | vex 2863 |
. . . . . . 7
⊢ a ∈
V |
4 | 2, 3 | opex 4589 |
. . . . . 6
⊢ 〈r, a〉 ∈ V |
5 | 4 | elcompl 3226 |
. . . . 5
⊢ (〈r, a〉 ∈ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c) ↔ ¬ 〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c)) |
6 | | elin 3220 |
. . . . . . . . . 10
⊢ (〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) ↔ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ∧ 〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “
1c))) |
7 | 2 | otelins2 5792 |
. . . . . . . . . . . 12
⊢ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ↔ 〈{x}, a〉 ∈ S
) |
8 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ x ∈
V |
9 | 8, 3 | opelssetsn 4761 |
. . . . . . . . . . . 12
⊢ (〈{x}, a〉 ∈ S ↔ x ∈ a) |
10 | 7, 9 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ↔ x ∈ a) |
11 | | elin 3220 |
. . . . . . . . . . . . . . 15
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) ↔ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ∧ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I ))) |
12 | | snex 4112 |
. . . . . . . . . . . . . . . . . 18
⊢ {x} ∈
V |
13 | 12 | otelins2 5792 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{y}, 〈r, a〉〉 ∈ Ins2 S ) |
14 | 2 | otelins2 5792 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈r, a〉〉 ∈ Ins2 S ↔ 〈{y}, a〉 ∈ S
) |
15 | | vex 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ y ∈
V |
16 | 15, 3 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, a〉 ∈ S ↔ y ∈ a) |
17 | 13, 14, 16 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ↔ y ∈ a) |
18 | | eldif 3222 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I ) ↔ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ∼ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∧ ¬ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins3 I
)) |
19 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {y} ∈
V |
20 | 12, 4 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 〈{x}, 〈r, a〉〉 ∈
V |
21 | 19, 20 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ V |
22 | 21 | elcompl 3226 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ∼ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ↔ ¬ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c)) |
23 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ ( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) ↔ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ Ins2 Ins2 Ins2 S ∧ 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c)))) |
24 | 19 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ Ins2 Ins2 Ins2 S ↔ 〈{z}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ) |
25 | 12 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{z}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{z}, 〈r, a〉〉 ∈ Ins2 S ) |
26 | 2 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈{z}, 〈r, a〉〉 ∈ Ins2 S ↔ 〈{z}, a〉 ∈ S
) |
27 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ z ∈
V |
28 | 27, 3 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈{z}, a〉 ∈ S ↔ z ∈ a) |
29 | 26, 28 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{z}, 〈r, a〉〉 ∈ Ins2 S ↔ z ∈ a) |
30 | 24, 25, 29 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ Ins2 Ins2 Ins2 S ↔ z ∈ a) |
31 | | elsymdif 3224 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c)) ↔ ¬ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) |
32 | 19 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ 〈{z}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “
1c)) |
33 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (〈{z}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ ∃p〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S )) |
34 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ (〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ∧ 〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S )) |
35 | 2 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ↔ 〈{p}, 〈{z}, {x}〉〉 ∈ SI3 I ) |
36 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ p ∈
V |
37 | 36, 27, 8 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (〈{p}, 〈{z}, {x}〉〉 ∈ SI3 I ↔ 〈p, 〈z, x〉〉 ∈ I
) |
38 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (p I 〈z, x〉 ↔ 〈p, 〈z, x〉〉 ∈ I
) |
39 | 27, 8 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ 〈z, x〉 ∈ V |
40 | 39 | ideq 4871 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (p I 〈z, x〉 ↔ p =
〈z,
x〉) |
41 | 37, 38, 40 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (〈{p}, 〈{z}, {x}〉〉 ∈ SI3 I ↔ p = 〈z, x〉) |
42 | 35, 41 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ↔ p = 〈z, x〉) |
43 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ {z} ∈
V |
44 | 43 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{p}, 〈{x}, r〉〉 ∈ Ins2 S ) |
45 | 12 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (〈{p}, 〈{x}, r〉〉 ∈ Ins2 S ↔ 〈{p}, r〉 ∈ S
) |
46 | 36, 2 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (〈{p}, r〉 ∈ S ↔ p ∈ r) |
47 | 44, 45, 46 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ↔ p ∈ r) |
48 | 42, 47 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ∧ 〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ) ↔ (p =
〈z,
x〉 ∧ p ∈ r)) |
49 | 34, 48 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ (p =
〈z,
x〉 ∧ p ∈ r)) |
50 | 49 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (∃p〈{p}, 〈{z}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ ∃p(p = 〈z, x〉 ∧ p ∈ r)) |
51 | 33, 50 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (〈{z}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ ∃p(p = 〈z, x〉 ∧ p ∈ r)) |
52 | 3 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (〈{z}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ 〈{z}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “
1c)) |
53 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (zrx ↔ 〈z, x〉 ∈ r) |
54 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (〈z, x〉 ∈ r ↔
∃p(p = 〈z, x〉 ∧ p ∈ r)) |
55 | 53, 54 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (zrx ↔ ∃p(p = 〈z, x〉 ∧ p ∈ r)) |
56 | 51, 52, 55 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (〈{z}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ zrx) |
57 | 32, 56 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ zrx) |
58 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) ↔ (〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ Ins4 SI3 I ∧ 〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ Ins2 Ins2 Ins2 Ins3 S )) |
59 | 20 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ Ins4 SI3 I ↔ 〈{p}, 〈{z}, {y}〉〉 ∈ SI3 I ) |
60 | 36, 27, 15 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (〈{p}, 〈{z}, {y}〉〉 ∈ SI3 I ↔ 〈p, 〈z, y〉〉 ∈ I
) |
61 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (p I 〈z, y〉 ↔ 〈p, 〈z, y〉〉 ∈ I
) |
62 | 27, 15 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 〈z, y〉 ∈ V |
63 | 62 | ideq 4871 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (p I 〈z, y〉 ↔ p =
〈z,
y〉) |
64 | 60, 61, 63 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (〈{p}, 〈{z}, {y}〉〉 ∈ SI3 I ↔ p = 〈z, y〉) |
65 | 59, 64 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ Ins4 SI3 I ↔ p = 〈z, y〉) |
66 | 43 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ Ins2 Ins2 Ins2 Ins3 S ↔ 〈{p}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ Ins2 Ins2 Ins3 S ) |
67 | 19 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (〈{p}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ Ins2 Ins2 Ins3 S ↔ 〈{p}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins3 S ) |
68 | 12 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (〈{p}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins3 S ↔ 〈{p}, 〈r, a〉〉 ∈ Ins3 S ) |
69 | 3 | otelins3 5793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (〈{p}, 〈r, a〉〉 ∈ Ins3 S ↔ 〈{p}, r〉 ∈ S
) |
70 | 68, 69, 46 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (〈{p}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins3 S ↔ p ∈ r) |
71 | 66, 67, 70 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ Ins2 Ins2 Ins2 Ins3 S ↔ p ∈ r) |
72 | 65, 71 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ Ins4 SI3 I ∧ 〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ Ins2 Ins2 Ins2 Ins3 S ) ↔ (p =
〈z,
y〉 ∧ p ∈ r)) |
73 | 58, 72 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) ↔ (p =
〈z,
y〉 ∧ p ∈ r)) |
74 | 73 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (∃p〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) ↔ ∃p(p = 〈z, y〉 ∧ p ∈ r)) |
75 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c) ↔ ∃p〈{p}, 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S )) |
76 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (zry ↔ 〈z, y〉 ∈ r) |
77 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (〈z, y〉 ∈ r ↔
∃p(p = 〈z, y〉 ∧ p ∈ r)) |
78 | 76, 77 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (zry ↔ ∃p(p = 〈z, y〉 ∧ p ∈ r)) |
79 | 74, 75, 78 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c) ↔ zry) |
80 | 57, 79 | bibi12i 306 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c)) ↔ (zrx ↔ zry)) |
81 | 31, 80 | xchbinx 301 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c)) ↔ ¬
(zrx ↔
zry)) |
82 | 30, 81 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ Ins2 Ins2 Ins2 S ∧ 〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) ↔ (z ∈ a ∧ ¬ (zrx ↔ zry))) |
83 | 23, 82 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ ( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) ↔ (z ∈ a ∧ ¬ (zrx ↔ zry))) |
84 | 83 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃z〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ ( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) ↔ ∃z(z ∈ a ∧ ¬ (zrx ↔ zry))) |
85 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ↔ ∃z〈{z}, 〈{y}, 〈{x}, 〈r, a〉〉〉〉 ∈ ( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c)))) |
86 | | df-rex 2621 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃z ∈ a ¬
(zrx ↔
zry) ↔ ∃z(z ∈ a ∧ ¬ (zrx ↔ zry))) |
87 | 84, 85, 86 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ↔ ∃z ∈ a ¬ (zrx ↔ zry)) |
88 | 22, 87 | xchbinx 301 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ∼ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ↔ ¬ ∃z ∈ a ¬ (zrx ↔ zry)) |
89 | | dfral2 2627 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∀z ∈ a (zrx ↔ zry) ↔ ¬ ∃z ∈ a ¬
(zrx ↔
zry)) |
90 | 88, 89 | bitr4i 243 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ∼ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ↔ ∀z ∈ a (zrx ↔
zry)) |
91 | 4 | otelins3 5793 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins3 I ↔ 〈{y}, {x}〉 ∈ I ) |
92 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({y} I {x} ↔
〈{y},
{x}〉
∈ I ) |
93 | 12 | ideq 4871 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({y} I {x} ↔
{y} = {x}) |
94 | 15 | sneqb 3877 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({y} = {x} ↔
y = x) |
95 | | equcom 1680 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (y = x ↔
x = y) |
96 | 93, 94, 95 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({y} I {x} ↔
x = y) |
97 | 91, 92, 96 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins3 I ↔
x = y) |
98 | 97 | notbii 287 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins3 I ↔ ¬
x = y) |
99 | 90, 98 | anbi12i 678 |
. . . . . . . . . . . . . . . . 17
⊢ ((〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ∼ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∧ ¬ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins3 I ) ↔
(∀z
∈ a
(zrx ↔
zry) ∧ ¬ x =
y)) |
100 | 18, 99 | bitri 240 |
. . . . . . . . . . . . . . . 16
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I ) ↔ (∀z ∈ a (zrx ↔ zry) ∧ ¬ x = y)) |
101 | 17, 100 | anbi12i 678 |
. . . . . . . . . . . . . . 15
⊢ ((〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ∧ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) ↔ (y
∈ a ∧ (∀z ∈ a (zrx ↔
zry) ∧ ¬ x =
y))) |
102 | 11, 101 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) ↔ (y
∈ a ∧ (∀z ∈ a (zrx ↔
zry) ∧ ¬ x =
y))) |
103 | 102 | exbii 1582 |
. . . . . . . . . . . . 13
⊢ (∃y〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) ↔ ∃y(y ∈ a ∧ (∀z ∈ a (zrx ↔ zry) ∧ ¬ x = y))) |
104 | | elima1c 4948 |
. . . . . . . . . . . . 13
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c) ↔ ∃y〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I ))) |
105 | | df-rex 2621 |
. . . . . . . . . . . . 13
⊢ (∃y ∈ a (∀z ∈ a (zrx ↔ zry) ∧ ¬ x = y) ↔
∃y(y ∈ a ∧ (∀z ∈ a (zrx ↔
zry) ∧ ¬ x =
y))) |
106 | 103, 104,
105 | 3bitr4i 268 |
. . . . . . . . . . . 12
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c) ↔ ∃y ∈ a (∀z ∈ a (zrx ↔ zry) ∧ ¬ x = y)) |
107 | | rexanali 2661 |
. . . . . . . . . . . 12
⊢ (∃y ∈ a (∀z ∈ a (zrx ↔ zry) ∧ ¬ x = y) ↔
¬ ∀y ∈ a (∀z ∈ a (zrx ↔
zry) →
x = y)) |
108 | 106, 107 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c) ↔ ¬
∀y
∈ a
(∀z
∈ a
(zrx ↔
zry) →
x = y)) |
109 | 10, 108 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((〈{x}, 〈r, a〉〉 ∈ Ins2 S ∧ 〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) ↔
(x ∈
a ∧ ¬
∀y
∈ a
(∀z
∈ a
(zrx ↔
zry) →
x = y))) |
110 | 6, 109 | bitri 240 |
. . . . . . . . 9
⊢ (〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) ↔
(x ∈
a ∧ ¬
∀y
∈ a
(∀z
∈ a
(zrx ↔
zry) →
x = y))) |
111 | 110 | exbii 1582 |
. . . . . . . 8
⊢ (∃x〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y))) |
112 | | elima1c 4948 |
. . . . . . . 8
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c) ↔ ∃x〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “
1c))) |
113 | | df-rex 2621 |
. . . . . . . 8
⊢ (∃x ∈ a ¬ ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y))) |
114 | 111, 112,
113 | 3bitr4i 268 |
. . . . . . 7
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c) ↔ ∃x ∈ a ¬ ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y)) |
115 | | rexnal 2626 |
. . . . . . 7
⊢ (∃x ∈ a ¬ ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y) ↔ ¬ ∀x ∈ a ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y)) |
116 | 114, 115 | bitri 240 |
. . . . . 6
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c) ↔ ¬ ∀x ∈ a ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y)) |
117 | 116 | con2bii 322 |
. . . . 5
⊢ (∀x ∈ a ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y) ↔ ¬ 〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c)) |
118 | 5, 117 | bitr4i 243 |
. . . 4
⊢ (〈r, a〉 ∈ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c) ↔ ∀x ∈ a ∀y ∈ a (∀z ∈ a (zrx ↔
zry) →
x = y)) |
119 | 118 | opabbi2i 4867 |
. . 3
⊢ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c) = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (∀z ∈ a (zrx ↔ zry) → x =
y)} |
120 | 1, 119 | eqtr4i 2376 |
. 2
⊢ Ext = ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ ((
Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c) |
121 | | ssetex 4745 |
. . . . . 6
⊢ S ∈
V |
122 | 121 | ins2ex 5798 |
. . . . 5
⊢ Ins2 S ∈ V |
123 | 122 | ins2ex 5798 |
. . . . . . 7
⊢ Ins2 Ins2 S ∈
V |
124 | 123 | ins2ex 5798 |
. . . . . . . . . . 11
⊢ Ins2 Ins2 Ins2 S ∈ V |
125 | | idex 5505 |
. . . . . . . . . . . . . . . . . 18
⊢ I ∈ V |
126 | 125 | si3ex 5807 |
. . . . . . . . . . . . . . . . 17
⊢ SI3 I ∈ V |
127 | 126 | ins4ex 5800 |
. . . . . . . . . . . . . . . 16
⊢ Ins4 SI3
I ∈ V |
128 | 127, 123 | inex 4106 |
. . . . . . . . . . . . . . 15
⊢ ( Ins4 SI3
I ∩ Ins2 Ins2
S ) ∈
V |
129 | | 1cex 4143 |
. . . . . . . . . . . . . . 15
⊢
1c ∈
V |
130 | 128, 129 | imaex 4748 |
. . . . . . . . . . . . . 14
⊢ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ∈ V |
131 | 130 | ins4ex 5800 |
. . . . . . . . . . . . 13
⊢ Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ∈ V |
132 | 131 | ins2ex 5798 |
. . . . . . . . . . . 12
⊢ Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ∈ V |
133 | 121 | ins3ex 5799 |
. . . . . . . . . . . . . . . . 17
⊢ Ins3 S ∈ V |
134 | 133 | ins2ex 5798 |
. . . . . . . . . . . . . . . 16
⊢ Ins2 Ins3 S ∈
V |
135 | 134 | ins2ex 5798 |
. . . . . . . . . . . . . . 15
⊢ Ins2 Ins2 Ins3 S ∈ V |
136 | 135 | ins2ex 5798 |
. . . . . . . . . . . . . 14
⊢ Ins2 Ins2 Ins2 Ins3 S ∈
V |
137 | 127, 136 | inex 4106 |
. . . . . . . . . . . . 13
⊢ ( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) ∈
V |
138 | 137, 129 | imaex 4748 |
. . . . . . . . . . . 12
⊢ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c) ∈ V |
139 | 132, 138 | symdifex 4109 |
. . . . . . . . . . 11
⊢ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c)) ∈ V |
140 | 124, 139 | inex 4106 |
. . . . . . . . . 10
⊢ ( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) ∈ V |
141 | 140, 129 | imaex 4748 |
. . . . . . . . 9
⊢ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∈ V |
142 | 141 | complex 4105 |
. . . . . . . 8
⊢ ∼ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∈ V |
143 | 125 | ins3ex 5799 |
. . . . . . . 8
⊢ Ins3 I ∈
V |
144 | 142, 143 | difex 4108 |
. . . . . . 7
⊢ ( ∼ (( Ins2 Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ⊕ ((
Ins4 SI3 I ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I ) ∈
V |
145 | 123, 144 | inex 4106 |
. . . . . 6
⊢ ( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) ∈
V |
146 | 145, 129 | imaex 4748 |
. . . . 5
⊢ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c) ∈ V |
147 | 122, 146 | inex 4106 |
. . . 4
⊢ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) ∈ V |
148 | 147, 129 | imaex 4748 |
. . 3
⊢ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c) ∈ V |
149 | 148 | complex 4105 |
. 2
⊢ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ ( ∼ (( Ins2
Ins2 Ins2 S ∩ ( Ins2 Ins4 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ⊕ (( Ins4 SI3
I ∩ Ins2 Ins2
Ins2 Ins3 S ) “ 1c))) “
1c) ∖ Ins3 I )) “ 1c)) “
1c) ∈ V |
150 | 120, 149 | eqeltri 2423 |
1
⊢ Ext ∈
V |