New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfpss4 | GIF version |
Description: Alternate definition of proper subset. Theorem IX.4.21 of [Rosser] p. 236. (Contributed by SF, 19-Jan-2015.) |
Ref | Expression |
---|---|
dfpss4 | ⊢ (A ⊊ B ↔ (A ⊆ B ∧ ∃x ∈ B ¬ x ∈ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss3 3356 | . 2 ⊢ (A ⊊ B ↔ (A ⊆ B ∧ ¬ B ⊆ A)) | |
2 | dfss3 3264 | . . . . 5 ⊢ (B ⊆ A ↔ ∀x ∈ B x ∈ A) | |
3 | dfral2 2627 | . . . . 5 ⊢ (∀x ∈ B x ∈ A ↔ ¬ ∃x ∈ B ¬ x ∈ A) | |
4 | 2, 3 | bitr2i 241 | . . . 4 ⊢ (¬ ∃x ∈ B ¬ x ∈ A ↔ B ⊆ A) |
5 | 4 | con1bii 321 | . . 3 ⊢ (¬ B ⊆ A ↔ ∃x ∈ B ¬ x ∈ A) |
6 | 5 | anbi2i 675 | . 2 ⊢ ((A ⊆ B ∧ ¬ B ⊆ A) ↔ (A ⊆ B ∧ ∃x ∈ B ¬ x ∈ A)) |
7 | 1, 6 | bitri 240 | 1 ⊢ (A ⊊ B ↔ (A ⊆ B ∧ ∃x ∈ B ¬ x ∈ A)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 ⊆ wss 3258 ⊊ wpss 3259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pss 3262 |
This theorem is referenced by: ssfin 4471 |
Copyright terms: Public domain | W3C validator |