New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dif32 | GIF version |
Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.) |
Ref | Expression |
---|---|
dif32 | ⊢ ((A ∖ B) ∖ C) = ((A ∖ C) ∖ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3409 | . . 3 ⊢ (B ∪ C) = (C ∪ B) | |
2 | 1 | difeq2i 3383 | . 2 ⊢ (A ∖ (B ∪ C)) = (A ∖ (C ∪ B)) |
3 | difun1 3515 | . 2 ⊢ (A ∖ (B ∪ C)) = ((A ∖ B) ∖ C) | |
4 | difun1 3515 | . 2 ⊢ (A ∖ (C ∪ B)) = ((A ∖ C) ∖ B) | |
5 | 2, 3, 4 | 3eqtr3i 2381 | 1 ⊢ ((A ∖ B) ∖ C) = ((A ∖ C) ∖ B) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∖ cdif 3207 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 |
This theorem is referenced by: difdifdir 3638 |
Copyright terms: Public domain | W3C validator |