Proof of Theorem difdifdir
Step | Hyp | Ref
| Expression |
1 | | dif32 3518 |
. . . . 5
⊢ ((A ∖ B) ∖ C) = ((A ∖ C) ∖ B) |
2 | | invdif 3497 |
. . . . 5
⊢ ((A ∖ C) ∩ (V ∖
B)) = ((A ∖ C) ∖ B) |
3 | 1, 2 | eqtr4i 2376 |
. . . 4
⊢ ((A ∖ B) ∖ C) = ((A ∖ C) ∩ (V
∖ B)) |
4 | | un0 3576 |
. . . 4
⊢ (((A ∖ C) ∩ (V ∖
B)) ∪ ∅) = ((A ∖ C) ∩ (V
∖ B)) |
5 | 3, 4 | eqtr4i 2376 |
. . 3
⊢ ((A ∖ B) ∖ C) = (((A ∖ C) ∩ (V
∖ B))
∪ ∅) |
6 | | indi 3502 |
. . . 4
⊢ ((A ∖ C) ∩ ((V ∖
B) ∪ C)) = (((A ∖ C) ∩ (V
∖ B))
∪ ((A ∖ C) ∩
C)) |
7 | | disjdif 3623 |
. . . . . 6
⊢ (C ∩ (A ∖ C)) = ∅ |
8 | | incom 3449 |
. . . . . 6
⊢ (C ∩ (A ∖ C)) =
((A ∖
C) ∩ C) |
9 | 7, 8 | eqtr3i 2375 |
. . . . 5
⊢ ∅ = ((A ∖ C) ∩
C) |
10 | 9 | uneq2i 3416 |
. . . 4
⊢ (((A ∖ C) ∩ (V ∖
B)) ∪ ∅) = (((A
∖ C)
∩ (V ∖ B)) ∪ ((A
∖ C)
∩ C)) |
11 | 6, 10 | eqtr4i 2376 |
. . 3
⊢ ((A ∖ C) ∩ ((V ∖
B) ∪ C)) = (((A ∖ C) ∩ (V
∖ B))
∪ ∅) |
12 | 5, 11 | eqtr4i 2376 |
. 2
⊢ ((A ∖ B) ∖ C) = ((A ∖ C) ∩ ((V
∖ B)
∪ C)) |
13 | | ddif 3399 |
. . . . 5
⊢ (V ∖ (V ∖ C)) = C |
14 | 13 | uneq2i 3416 |
. . . 4
⊢ ((V ∖ B) ∪ (V
∖ (V ∖
C))) = ((V ∖ B) ∪
C) |
15 | | indm 3514 |
. . . . 5
⊢ (V ∖ (B ∩ (V
∖ C))) =
((V ∖ B)
∪ (V ∖ (V ∖ C))) |
16 | | invdif 3497 |
. . . . . 6
⊢ (B ∩ (V ∖
C)) = (B ∖ C) |
17 | 16 | difeq2i 3383 |
. . . . 5
⊢ (V ∖ (B ∩ (V
∖ C))) =
(V ∖ (B
∖ C)) |
18 | 15, 17 | eqtr3i 2375 |
. . . 4
⊢ ((V ∖ B) ∪ (V
∖ (V ∖
C))) = (V ∖ (B ∖ C)) |
19 | 14, 18 | eqtr3i 2375 |
. . 3
⊢ ((V ∖ B) ∪
C) = (V ∖ (B ∖ C)) |
20 | 19 | ineq2i 3455 |
. 2
⊢ ((A ∖ C) ∩ ((V ∖
B) ∪ C)) = ((A ∖ C) ∩ (V
∖ (B
∖ C))) |
21 | | invdif 3497 |
. 2
⊢ ((A ∖ C) ∩ (V ∖
(B ∖
C))) = ((A ∖ C) ∖ (B ∖ C)) |
22 | 12, 20, 21 | 3eqtri 2377 |
1
⊢ ((A ∖ B) ∖ C) = ((A ∖ C) ∖ (B ∖ C)) |