New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difabs | GIF version |
Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.) |
Ref | Expression |
---|---|
difabs | ⊢ ((A ∖ B) ∖ B) = (A ∖ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difun1 3515 | . 2 ⊢ (A ∖ (B ∪ B)) = ((A ∖ B) ∖ B) | |
2 | unidm 3408 | . . 3 ⊢ (B ∪ B) = B | |
3 | 2 | difeq2i 3383 | . 2 ⊢ (A ∖ (B ∪ B)) = (A ∖ B) |
4 | 1, 3 | eqtr3i 2375 | 1 ⊢ ((A ∖ B) ∖ B) = (A ∖ B) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∖ cdif 3207 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |