| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > symdif1 | GIF version | ||
| Description: Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| symdif1 | ⊢ ((A ∖ B) ∪ (B ∖ A)) = ((A ∪ B) ∖ (A ∩ B)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundir 3509 | . 2 ⊢ ((A ∪ B) ∖ (A ∩ B)) = ((A ∖ (A ∩ B)) ∪ (B ∖ (A ∩ B))) | |
| 2 | difin 3493 | . . 3 ⊢ (A ∖ (A ∩ B)) = (A ∖ B) | |
| 3 | incom 3449 | . . . . 5 ⊢ (A ∩ B) = (B ∩ A) | |
| 4 | 3 | difeq2i 3383 | . . . 4 ⊢ (B ∖ (A ∩ B)) = (B ∖ (B ∩ A)) |
| 5 | difin 3493 | . . . 4 ⊢ (B ∖ (B ∩ A)) = (B ∖ A) | |
| 6 | 4, 5 | eqtri 2373 | . . 3 ⊢ (B ∖ (A ∩ B)) = (B ∖ A) |
| 7 | 2, 6 | uneq12i 3417 | . 2 ⊢ ((A ∖ (A ∩ B)) ∪ (B ∖ (A ∩ B))) = ((A ∖ B) ∪ (B ∖ A)) |
| 8 | 1, 7 | eqtr2i 2374 | 1 ⊢ ((A ∖ B) ∪ (B ∖ A)) = ((A ∪ B) ∖ (A ∩ B)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1642 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |