New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > disjel | GIF version |
Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.) |
Ref | Expression |
---|---|
disjel | ⊢ (((A ∩ B) = ∅ ∧ C ∈ A) → ¬ C ∈ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 3596 | . . 3 ⊢ ((A ∩ B) = ∅ ↔ A = (A ∖ B)) | |
2 | eleq2 2414 | . . . 4 ⊢ (A = (A ∖ B) → (C ∈ A ↔ C ∈ (A ∖ B))) | |
3 | eldifn 3390 | . . . 4 ⊢ (C ∈ (A ∖ B) → ¬ C ∈ B) | |
4 | 2, 3 | syl6bi 219 | . . 3 ⊢ (A = (A ∖ B) → (C ∈ A → ¬ C ∈ B)) |
5 | 1, 4 | sylbi 187 | . 2 ⊢ ((A ∩ B) = ∅ → (C ∈ A → ¬ C ∈ B)) |
6 | 5 | imp 418 | 1 ⊢ (((A ∩ B) = ∅ ∧ C ∈ A) → ¬ C ∈ B) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∖ cdif 3207 ∩ cin 3209 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |