New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > disj2 | GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
disj2 | ⊢ ((A ∩ B) = ∅ ↔ A ⊆ (V ∖ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3292 | . 2 ⊢ A ⊆ V | |
2 | reldisj 3595 | . 2 ⊢ (A ⊆ V → ((A ∩ B) = ∅ ↔ A ⊆ (V ∖ B))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((A ∩ B) = ∅ ↔ A ⊆ (V ∖ B)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 Vcvv 2860 ∖ cdif 3207 ∩ cin 3209 ⊆ wss 3258 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 |
This theorem is referenced by: ssindif0 3605 |
Copyright terms: Public domain | W3C validator |