NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylanbrc GIF version

Theorem sylanbrc 645
Description: Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
sylanbrc.1 (φψ)
sylanbrc.2 (φχ)
sylanbrc.3 (θ ↔ (ψ χ))
Assertion
Ref Expression
sylanbrc (φθ)

Proof of Theorem sylanbrc
StepHypRef Expression
1 sylanbrc.1 . . 3 (φψ)
2 sylanbrc.2 . . 3 (φχ)
31, 2jca 518 . 2 (φ → (ψ χ))
4 sylanbrc.3 . 2 (θ ↔ (ψ χ))
53, 4sylibr 203 1 (φθ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  ecase23d  1285  sbequ1  1918  sb2  2023  sbn  2062  eqeu  3008  euind  3024  reuind  3040  eqssd  3290  ssrabdv  3346  psstr  3374  vfinnc  4472  nnpw1ex  4485  evenoddnnnul  4515  sfinltfin  4536  sfin111  4537  imainss  5043  ssdmrn  5100  fnprg  5154  fnco  5192  f00  5250  f1ss  5263  f1f1orn  5298  foimacnv  5304  fun11iun  5306  dff3  5421  foco2  5427  ffnfv  5428  ffvresb  5432  isoini2  5499  f1oiso  5500  fnoprabg  5586  fmpt  5693  fmpt2d  5696  f1od  5727  sod  5938  so0  5942  iserd  5943  enpw1  6063  ncspw1eu  6160  ltcpw1pwg  6203  nchoicelem17  6306  nchoice  6309  fnfrec  6321
  Copyright terms: Public domain W3C validator