New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eceq1 | GIF version |
Description: Equality theorem for equivalence class. (Contributed by set.mm contributors, 23-Jul-1995.) |
Ref | Expression |
---|---|
eceq1 | ⊢ (A = B → [A]C = [B]C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3744 | . . 3 ⊢ (A = B → {A} = {B}) | |
2 | 1 | imaeq2d 4942 | . 2 ⊢ (A = B → (C “ {A}) = (C “ {B})) |
3 | df-ec 5947 | . 2 ⊢ [A]C = (C “ {A}) | |
4 | df-ec 5947 | . 2 ⊢ [B]C = (C “ {B}) | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → [A]C = [B]C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 {csn 3737 “ cima 4722 [cec 5945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-sn 3741 df-ima 4727 df-ec 5947 |
This theorem is referenced by: ecelqsg 5979 snec 5987 ecoptocl 5996 nceq 6108 |
Copyright terms: Public domain | W3C validator |