New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ecelqsg | GIF version |
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
ecelqsg | ⊢ ((R ∈ V ∧ B ∈ A) → [B]R ∈ (A / R)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2353 | . . 3 ⊢ [B]R = [B]R | |
2 | eceq1 5963 | . . . . 5 ⊢ (x = B → [x]R = [B]R) | |
3 | 2 | eqeq2d 2364 | . . . 4 ⊢ (x = B → ([B]R = [x]R ↔ [B]R = [B]R)) |
4 | 3 | rspcev 2956 | . . 3 ⊢ ((B ∈ A ∧ [B]R = [B]R) → ∃x ∈ A [B]R = [x]R) |
5 | 1, 4 | mpan2 652 | . 2 ⊢ (B ∈ A → ∃x ∈ A [B]R = [x]R) |
6 | ecexg 5950 | . . . 4 ⊢ (R ∈ V → [B]R ∈ V) | |
7 | elqsg 5977 | . . . 4 ⊢ ([B]R ∈ V → ([B]R ∈ (A / R) ↔ ∃x ∈ A [B]R = [x]R)) | |
8 | 6, 7 | syl 15 | . . 3 ⊢ (R ∈ V → ([B]R ∈ (A / R) ↔ ∃x ∈ A [B]R = [x]R)) |
9 | 8 | biimpar 471 | . 2 ⊢ ((R ∈ V ∧ ∃x ∈ A [B]R = [x]R) → [B]R ∈ (A / R)) |
10 | 5, 9 | sylan2 460 | 1 ⊢ ((R ∈ V ∧ B ∈ A) → [B]R ∈ (A / R)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 [cec 5946 / cqs 5947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-ima 4728 df-ec 5948 df-qs 5952 |
This theorem is referenced by: ecelqsi 5981 |
Copyright terms: Public domain | W3C validator |