New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqer | GIF version |
Description: Equivalence relation involving equality of dependent classes A(x) and B(y). (Contributed by set.mm contributors, 17-Mar-2008.) |
Ref | Expression |
---|---|
eqer.1 | ⊢ (x = y → A = B) |
eqer.2 | ⊢ R = {〈x, y〉 ∣ A = B} |
eqer.3 | ⊢ R ∈ V |
Ref | Expression |
---|---|
eqer | ⊢ R Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.3 | . . . 4 ⊢ R ∈ V | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → R ∈ V) |
3 | vvex 4109 | . . . 4 ⊢ V ∈ V | |
4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → V ∈ V) |
5 | id 19 | . . . . . 6 ⊢ ([z / x]A = [w / x]A → [z / x]A = [w / x]A) | |
6 | 5 | eqcomd 2358 | . . . . 5 ⊢ ([z / x]A = [w / x]A → [w / x]A = [z / x]A) |
7 | eqer.1 | . . . . . 6 ⊢ (x = y → A = B) | |
8 | eqer.2 | . . . . . 6 ⊢ R = {〈x, y〉 ∣ A = B} | |
9 | 7, 8 | eqerlem 5960 | . . . . 5 ⊢ (zRw ↔ [z / x]A = [w / x]A) |
10 | 7, 8 | eqerlem 5960 | . . . . 5 ⊢ (wRz ↔ [w / x]A = [z / x]A) |
11 | 6, 9, 10 | 3imtr4i 257 | . . . 4 ⊢ (zRw → wRz) |
12 | 11 | 3ad2ant3 978 | . . 3 ⊢ (( ⊤ ∧ (z ∈ V ∧ w ∈ V) ∧ zRw) → wRz) |
13 | eqtr 2370 | . . . . 5 ⊢ (([z / x]A = [w / x]A ∧ [w / x]A = [v / x]A) → [z / x]A = [v / x]A) | |
14 | 7, 8 | eqerlem 5960 | . . . . . 6 ⊢ (wRv ↔ [w / x]A = [v / x]A) |
15 | 9, 14 | anbi12i 678 | . . . . 5 ⊢ ((zRw ∧ wRv) ↔ ([z / x]A = [w / x]A ∧ [w / x]A = [v / x]A)) |
16 | 7, 8 | eqerlem 5960 | . . . . 5 ⊢ (zRv ↔ [z / x]A = [v / x]A) |
17 | 13, 15, 16 | 3imtr4i 257 | . . . 4 ⊢ ((zRw ∧ wRv) → zRv) |
18 | 17 | 3ad2ant3 978 | . . 3 ⊢ (( ⊤ ∧ (z ∈ V ∧ w ∈ V ∧ v ∈ V) ∧ (zRw ∧ wRv)) → zRv) |
19 | 2, 4, 12, 18 | iserd 5942 | . 2 ⊢ ( ⊤ → R Er V) |
20 | 19 | trud 1323 | 1 ⊢ R Er V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 ⊤ wtru 1316 = wceq 1642 ∈ wcel 1710 Vcvv 2859 [csb 3136 {copab 4622 class class class wbr 4639 Er cer 5898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-csb 3137 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-trans 5899 df-sym 5908 df-er 5909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |