NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nceq GIF version

Theorem nceq 6109
Description: Cardinality equality law. (Contributed by SF, 24-Feb-2015.)
Assertion
Ref Expression
nceq (A = BNc A = Nc B)

Proof of Theorem nceq
StepHypRef Expression
1 eceq1 5963 . 2 (A = B → [A] ≈ = [B] ≈ )
2 df-nc 6102 . 2 Nc A = [A] ≈
3 df-nc 6102 . 2 Nc B = [B] ≈
41, 2, 33eqtr4g 2410 1 (A = BNc A = Nc B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  [cec 5946  cen 6029   Nc cnc 6092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-sn 3742  df-ima 4728  df-ec 5948  df-nc 6102
This theorem is referenced by:  nceqi  6110  nceqd  6111  ncelncs  6121  1cnc  6140  ncaddccl  6145  ce0addcnnul  6180  nc0le1  6217  ce0lenc1  6240  muc0or  6253
  Copyright terms: Public domain W3C validator