New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nceq | GIF version |
Description: Cardinality equality law. (Contributed by SF, 24-Feb-2015.) |
Ref | Expression |
---|---|
nceq | ⊢ (A = B → Nc A = Nc B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq1 5963 | . 2 ⊢ (A = B → [A] ≈ = [B] ≈ ) | |
2 | df-nc 6102 | . 2 ⊢ Nc A = [A] ≈ | |
3 | df-nc 6102 | . 2 ⊢ Nc B = [B] ≈ | |
4 | 1, 2, 3 | 3eqtr4g 2410 | 1 ⊢ (A = B → Nc A = Nc B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 [cec 5946 ≈ cen 6029 Nc cnc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-sn 3742 df-ima 4728 df-ec 5948 df-nc 6102 |
This theorem is referenced by: nceqi 6110 nceqd 6111 ncelncs 6121 1cnc 6140 ncaddccl 6145 ce0addcnnul 6180 nc0le1 6217 ce0lenc1 6240 muc0or 6253 |
Copyright terms: Public domain | W3C validator |