| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > eleq12d | GIF version | ||
| Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) | 
| Ref | Expression | 
|---|---|
| eleq1d.1 | ⊢ (φ → A = B) | 
| eleq12d.2 | ⊢ (φ → C = D) | 
| Ref | Expression | 
|---|---|
| eleq12d | ⊢ (φ → (A ∈ C ↔ B ∈ D)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq12d.2 | . . 3 ⊢ (φ → C = D) | |
| 2 | 1 | eleq2d 2420 | . 2 ⊢ (φ → (A ∈ C ↔ A ∈ D)) | 
| 3 | eleq1d.1 | . . 3 ⊢ (φ → A = B) | |
| 4 | 3 | eleq1d 2419 | . 2 ⊢ (φ → (A ∈ D ↔ B ∈ D)) | 
| 5 | 2, 4 | bitrd 244 | 1 ⊢ (φ → (A ∈ C ↔ B ∈ D)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 | 
| This theorem is referenced by: cbvraldva2 2840 cbvrexdva2 2841 ru 3046 sbcel12g 3152 cbvralcsf 3199 cbvreucsf 3201 cbvrabcsf 3202 nenpw1pwlem2 6086 nmembers1 6272 | 
| Copyright terms: Public domain | W3C validator |