Step | Hyp | Ref
| Expression |
1 | | nfv 1619 |
. . . 4
⊢ Ⅎz(x ∈ A ∧ φ) |
2 | | nfcsb1v 3168 |
. . . . . 6
⊢
Ⅎx[z / x]A |
3 | 2 | nfcri 2483 |
. . . . 5
⊢ Ⅎx z ∈ [z /
x]A |
4 | | nfs1v 2106 |
. . . . 5
⊢ Ⅎx[z / x]φ |
5 | 3, 4 | nfan 1824 |
. . . 4
⊢ Ⅎx(z ∈ [z /
x]A ∧ [z / x]φ) |
6 | | id 19 |
. . . . . 6
⊢ (x = z →
x = z) |
7 | | csbeq1a 3144 |
. . . . . 6
⊢ (x = z →
A = [z / x]A) |
8 | 6, 7 | eleq12d 2421 |
. . . . 5
⊢ (x = z →
(x ∈
A ↔ z ∈
[z / x]A)) |
9 | | sbequ12 1919 |
. . . . 5
⊢ (x = z →
(φ ↔ [z / x]φ)) |
10 | 8, 9 | anbi12d 691 |
. . . 4
⊢ (x = z →
((x ∈
A ∧ φ) ↔ (z ∈
[z / x]A ∧ [z / x]φ))) |
11 | 1, 5, 10 | cbvab 2471 |
. . 3
⊢ {x ∣ (x ∈ A ∧ φ)} = {z
∣ (z
∈ [z / x]A ∧ [z / x]φ)} |
12 | | nfcv 2489 |
. . . . . . 7
⊢
Ⅎyz |
13 | | cbvralcsf.1 |
. . . . . . 7
⊢
ℲyA |
14 | 12, 13 | nfcsb 3170 |
. . . . . 6
⊢
Ⅎy[z / x]A |
15 | 14 | nfcri 2483 |
. . . . 5
⊢ Ⅎy z ∈ [z /
x]A |
16 | | cbvralcsf.3 |
. . . . . 6
⊢ Ⅎyφ |
17 | 16 | nfsb 2109 |
. . . . 5
⊢ Ⅎy[z / x]φ |
18 | 15, 17 | nfan 1824 |
. . . 4
⊢ Ⅎy(z ∈ [z /
x]A ∧ [z / x]φ) |
19 | | nfv 1619 |
. . . 4
⊢ Ⅎz(y ∈ B ∧ ψ) |
20 | | id 19 |
. . . . . 6
⊢ (z = y →
z = y) |
21 | | csbeq1 3139 |
. . . . . . 7
⊢ (z = y →
[z / x]A =
[y / x]A) |
22 | | df-csb 3137 |
. . . . . . . 8
⊢ [y / x]A =
{v ∣
[̣y / x]̣v ∈ A} |
23 | | cbvralcsf.2 |
. . . . . . . . . . . 12
⊢
ℲxB |
24 | 23 | nfcri 2483 |
. . . . . . . . . . 11
⊢ Ⅎx v ∈ B |
25 | | cbvralcsf.5 |
. . . . . . . . . . . 12
⊢ (x = y →
A = B) |
26 | 25 | eleq2d 2420 |
. . . . . . . . . . 11
⊢ (x = y →
(v ∈
A ↔ v ∈ B)) |
27 | 24, 26 | sbie 2038 |
. . . . . . . . . 10
⊢ ([y / x]v ∈ A ↔ v ∈ B) |
28 | | sbsbc 3050 |
. . . . . . . . . 10
⊢ ([y / x]v ∈ A ↔ [̣y / x]̣v ∈ A) |
29 | 27, 28 | bitr3i 242 |
. . . . . . . . 9
⊢ (v ∈ B ↔ [̣y / x]̣v ∈ A) |
30 | 29 | abbi2i 2464 |
. . . . . . . 8
⊢ B = {v ∣ [̣y /
x]̣v ∈ A} |
31 | 22, 30 | eqtr4i 2376 |
. . . . . . 7
⊢ [y / x]A =
B |
32 | 21, 31 | syl6eq 2401 |
. . . . . 6
⊢ (z = y →
[z / x]A =
B) |
33 | 20, 32 | eleq12d 2421 |
. . . . 5
⊢ (z = y →
(z ∈
[z / x]A
↔ y ∈ B)) |
34 | | sbequ 2060 |
. . . . . 6
⊢ (z = y →
([z / x]φ ↔
[y / x]φ)) |
35 | | cbvralcsf.4 |
. . . . . . 7
⊢ Ⅎxψ |
36 | | cbvralcsf.6 |
. . . . . . 7
⊢ (x = y →
(φ ↔ ψ)) |
37 | 35, 36 | sbie 2038 |
. . . . . 6
⊢ ([y / x]φ ↔ ψ) |
38 | 34, 37 | syl6bb 252 |
. . . . 5
⊢ (z = y →
([z / x]φ ↔
ψ)) |
39 | 33, 38 | anbi12d 691 |
. . . 4
⊢ (z = y →
((z ∈
[z / x]A ∧ [z / x]φ) ↔
(y ∈
B ∧ ψ))) |
40 | 18, 19, 39 | cbvab 2471 |
. . 3
⊢ {z ∣ (z ∈
[z / x]A ∧ [z / x]φ)} =
{y ∣
(y ∈
B ∧ ψ)} |
41 | 11, 40 | eqtri 2373 |
. 2
⊢ {x ∣ (x ∈ A ∧ φ)} = {y
∣ (y
∈ B ∧ ψ)} |
42 | | df-rab 2623 |
. 2
⊢ {x ∈ A ∣ φ} = {x
∣ (x
∈ A ∧ φ)} |
43 | | df-rab 2623 |
. 2
⊢ {y ∈ B ∣ ψ} = {y
∣ (y
∈ B ∧ ψ)} |
44 | 41, 42, 43 | 3eqtr4i 2383 |
1
⊢ {x ∈ A ∣ φ} = {y
∈ B ∣ ψ} |