New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqrdv | GIF version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
Ref | Expression |
---|---|
eqrdv.1 | ⊢ (φ → (x ∈ A ↔ x ∈ B)) |
Ref | Expression |
---|---|
eqrdv | ⊢ (φ → A = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdv.1 | . . 3 ⊢ (φ → (x ∈ A ↔ x ∈ B)) | |
2 | 1 | alrimiv 1631 | . 2 ⊢ (φ → ∀x(x ∈ A ↔ x ∈ B)) |
3 | dfcleq 2347 | . 2 ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) | |
4 | 2, 3 | sylibr 203 | 1 ⊢ (φ → A = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-cleq 2346 |
This theorem is referenced by: eqrdav 2352 csbcomg 3159 csbabg 3197 uneq1 3411 ineq1 3450 unineq 3505 difin2 3516 difsn 3845 intmin4 3955 iunconst 3977 iinconst 3978 dfiun2g 3999 iindif2 4035 iinin2 4036 iinxprg 4043 iunxsng 4044 xpkeq1 4198 xpkeq2 4199 eqpw1uni 4330 iotaeq 4347 nnsucelrlem2 4425 dfco2a 5081 imadif 5171 fun11iun 5305 unpreima 5408 inpreima 5409 respreima 5410 fconstfv 5456 funiunfv 5467 erdmrn 5965 enprmaplem5 6080 ncdisjun 6136 nmembers1lem3 6270 |
Copyright terms: Public domain | W3C validator |