New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqrdv | GIF version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.) |
Ref | Expression |
---|---|
eqrdv.1 | ⊢ (φ → (x ∈ A ↔ x ∈ B)) |
Ref | Expression |
---|---|
eqrdv | ⊢ (φ → A = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdv.1 | . . 3 ⊢ (φ → (x ∈ A ↔ x ∈ B)) | |
2 | 1 | alrimiv 1631 | . 2 ⊢ (φ → ∀x(x ∈ A ↔ x ∈ B)) |
3 | dfcleq 2347 | . 2 ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) | |
4 | 2, 3 | sylibr 203 | 1 ⊢ (φ → A = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-cleq 2346 |
This theorem is referenced by: eqrdav 2352 csbcomg 3160 csbabg 3198 uneq1 3412 ineq1 3451 unineq 3506 difin2 3517 difsn 3846 intmin4 3956 iunconst 3978 iinconst 3979 dfiun2g 4000 iindif2 4036 iinin2 4037 iinxprg 4044 iunxsng 4045 xpkeq1 4199 xpkeq2 4200 eqpw1uni 4331 iotaeq 4348 nnsucelrlem2 4426 dfco2a 5082 imadif 5172 fun11iun 5306 unpreima 5409 inpreima 5410 respreima 5411 fconstfv 5457 funiunfv 5468 erdmrn 5966 enprmaplem5 6081 ncdisjun 6137 nmembers1lem3 6271 |
Copyright terms: Public domain | W3C validator |