New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb4 | GIF version |
Description: One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sb4 | ⊢ (¬ ∀x x = y → ([y / x]φ → ∀x(x = y → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1651 | . 2 ⊢ ([y / x]φ → ∃x(x = y ∧ φ)) | |
2 | equs5 1996 | . 2 ⊢ (¬ ∀x x = y → (∃x(x = y ∧ φ) → ∀x(x = y → φ))) | |
3 | 1, 2 | syl5 28 | 1 ⊢ (¬ ∀x x = y → ([y / x]φ → ∀x(x = y → φ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sb4b 2054 dfsb2 2055 hbsb2 2057 sbn 2062 sbi1 2063 sbal1 2126 |
Copyright terms: Public domain | W3C validator |