New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mopick2 | GIF version |
Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1609. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
mopick2 | ⊢ ((∃*xφ ∧ ∃x(φ ∧ ψ) ∧ ∃x(φ ∧ χ)) → ∃x(φ ∧ ψ ∧ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmo1 2215 | . . . 4 ⊢ Ⅎx∃*xφ | |
2 | nfe1 1732 | . . . 4 ⊢ Ⅎx∃x(φ ∧ ψ) | |
3 | 1, 2 | nfan 1824 | . . 3 ⊢ Ⅎx(∃*xφ ∧ ∃x(φ ∧ ψ)) |
4 | mopick 2266 | . . . . . 6 ⊢ ((∃*xφ ∧ ∃x(φ ∧ ψ)) → (φ → ψ)) | |
5 | 4 | ancld 536 | . . . . 5 ⊢ ((∃*xφ ∧ ∃x(φ ∧ ψ)) → (φ → (φ ∧ ψ))) |
6 | 5 | anim1d 547 | . . . 4 ⊢ ((∃*xφ ∧ ∃x(φ ∧ ψ)) → ((φ ∧ χ) → ((φ ∧ ψ) ∧ χ))) |
7 | df-3an 936 | . . . 4 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
8 | 6, 7 | syl6ibr 218 | . . 3 ⊢ ((∃*xφ ∧ ∃x(φ ∧ ψ)) → ((φ ∧ χ) → (φ ∧ ψ ∧ χ))) |
9 | 3, 8 | eximd 1770 | . 2 ⊢ ((∃*xφ ∧ ∃x(φ ∧ ψ)) → (∃x(φ ∧ χ) → ∃x(φ ∧ ψ ∧ χ))) |
10 | 9 | 3impia 1148 | 1 ⊢ ((∃*xφ ∧ ∃x(φ ∧ ψ) ∧ ∃x(φ ∧ χ)) → ∃x(φ ∧ ψ ∧ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 ∃wex 1541 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |