New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eupicka | GIF version |
Description: Version of eupick 2267 with closed formulas. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
eupicka | ⊢ ((∃!xφ ∧ ∃x(φ ∧ ψ)) → ∀x(φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2214 | . . 3 ⊢ Ⅎx∃!xφ | |
2 | nfe1 1732 | . . 3 ⊢ Ⅎx∃x(φ ∧ ψ) | |
3 | 1, 2 | nfan 1824 | . 2 ⊢ Ⅎx(∃!xφ ∧ ∃x(φ ∧ ψ)) |
4 | eupick 2267 | . 2 ⊢ ((∃!xφ ∧ ∃x(φ ∧ ψ)) → (φ → ψ)) | |
5 | 3, 4 | alrimi 1765 | 1 ⊢ ((∃!xφ ∧ ∃x(φ ∧ ψ)) → ∀x(φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: eupickbi 2270 |
Copyright terms: Public domain | W3C validator |