New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eusn | GIF version |
Description: Two ways to express "A is a singleton." (Contributed by NM, 30-Oct-2010.) |
Ref | Expression |
---|---|
eusn | ⊢ (∃!x x ∈ A ↔ ∃x A = {x}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn 3793 | . 2 ⊢ (∃!x x ∈ A ↔ ∃x{x ∣ x ∈ A} = {x}) | |
2 | abid2 2471 | . . . 4 ⊢ {x ∣ x ∈ A} = A | |
3 | 2 | eqeq1i 2360 | . . 3 ⊢ ({x ∣ x ∈ A} = {x} ↔ A = {x}) |
4 | 3 | exbii 1582 | . 2 ⊢ (∃x{x ∣ x ∈ A} = {x} ↔ ∃x A = {x}) |
5 | 1, 4 | bitri 240 | 1 ⊢ (∃!x x ∈ A ↔ ∃x A = {x}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 {cab 2339 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-sn 3742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |