New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abid2 | GIF version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 | ⊢ {x ∣ x ∈ A} = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 227 | . . 3 ⊢ (x ∈ A ↔ x ∈ A) | |
2 | 1 | abbi2i 2464 | . 2 ⊢ A = {x ∣ x ∈ A} |
3 | 2 | eqcomi 2357 | 1 ⊢ {x ∣ x ∈ A} = A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: csbid 3143 csbexg 3146 abss 3335 ssab 3336 abssi 3341 notab 3525 inrab2 3528 dfrab2 3530 dfrab3 3531 notrab 3532 eusn 3796 uniintsn 3963 iunid 4021 imai 5010 epini 5021 clos1basesuc 5882 nnnc 6146 |
Copyright terms: Public domain | W3C validator |