New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abid2 | GIF version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 | ⊢ {x ∣ x ∈ A} = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 227 | . . 3 ⊢ (x ∈ A ↔ x ∈ A) | |
2 | 1 | abbi2i 2465 | . 2 ⊢ A = {x ∣ x ∈ A} |
3 | 2 | eqcomi 2357 | 1 ⊢ {x ∣ x ∈ A} = A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: csbid 3144 csbexg 3147 abss 3336 ssab 3337 abssi 3342 notab 3526 inrab2 3529 dfrab2 3531 dfrab3 3532 notrab 3533 eusn 3797 uniintsn 3964 iunid 4022 imai 5011 epini 5022 clos1basesuc 5883 nnnc 6147 |
Copyright terms: Public domain | W3C validator |