| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rabsnt | GIF version | ||
| Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| rabsnt.1 | ⊢ B ∈ V |
| rabsnt.2 | ⊢ (x = B → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| rabsnt | ⊢ ({x ∈ A ∣ φ} = {B} → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsnt.1 | . . . 4 ⊢ B ∈ V | |
| 2 | 1 | snid 3761 | . . 3 ⊢ B ∈ {B} |
| 3 | id 19 | . . 3 ⊢ ({x ∈ A ∣ φ} = {B} → {x ∈ A ∣ φ} = {B}) | |
| 4 | 2, 3 | syl5eleqr 2440 | . 2 ⊢ ({x ∈ A ∣ φ} = {B} → B ∈ {x ∈ A ∣ φ}) |
| 5 | rabsnt.2 | . . . 4 ⊢ (x = B → (φ ↔ ψ)) | |
| 6 | 5 | elrab 2995 | . . 3 ⊢ (B ∈ {x ∈ A ∣ φ} ↔ (B ∈ A ∧ ψ)) |
| 7 | 6 | simprbi 450 | . 2 ⊢ (B ∈ {x ∈ A ∣ φ} → ψ) |
| 8 | 4, 7 | syl 15 | 1 ⊢ ({x ∈ A ∣ φ} = {B} → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 {crab 2619 Vcvv 2860 {csn 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-sn 3742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |