New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > feq23 | GIF version |
Description: Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (The proof was shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
feq23 | ⊢ ((A = C ∧ B = D) → (F:A–→B ↔ F:C–→D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 5212 | . 2 ⊢ (A = C → (F:A–→B ↔ F:C–→B)) | |
2 | feq3 5213 | . 2 ⊢ (B = D → (F:C–→B ↔ F:C–→D)) | |
3 | 1, 2 | sylan9bb 680 | 1 ⊢ ((A = C ∧ B = D) → (F:A–→B ↔ F:C–→D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 –→wf 4778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-fn 4791 df-f 4792 |
This theorem is referenced by: feq23i 5220 feq23d 5221 |
Copyright terms: Public domain | W3C validator |