New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > feq3 | GIF version |
Description: Equality theorem for functions. (Contributed by set.mm contributors, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq3 | ⊢ (A = B → (F:C–→A ↔ F:C–→B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3294 | . . 3 ⊢ (A = B → (ran F ⊆ A ↔ ran F ⊆ B)) | |
2 | 1 | anbi2d 684 | . 2 ⊢ (A = B → ((F Fn C ∧ ran F ⊆ A) ↔ (F Fn C ∧ ran F ⊆ B))) |
3 | df-f 4792 | . 2 ⊢ (F:C–→A ↔ (F Fn C ∧ ran F ⊆ A)) | |
4 | df-f 4792 | . 2 ⊢ (F:C–→B ↔ (F Fn C ∧ ran F ⊆ B)) | |
5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ (A = B → (F:C–→A ↔ F:C–→B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ⊆ wss 3258 ran crn 4774 Fn wfn 4777 –→wf 4778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-f 4792 |
This theorem is referenced by: feq23 5214 fconstg 5252 f1eq3 5256 fsng 5434 fsn2 5435 mapex 6007 mapvalg 6010 mapsn 6027 |
Copyright terms: Public domain | W3C validator |