NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  feq3 GIF version

Theorem feq3 5213
Description: Equality theorem for functions. (Contributed by set.mm contributors, 1-Aug-1994.)
Assertion
Ref Expression
feq3 (A = B → (F:C–→AF:C–→B))

Proof of Theorem feq3
StepHypRef Expression
1 sseq2 3294 . . 3 (A = B → (ran F A ↔ ran F B))
21anbi2d 684 . 2 (A = B → ((F Fn C ran F A) ↔ (F Fn C ran F B)))
3 df-f 4792 . 2 (F:C–→A ↔ (F Fn C ran F A))
4 df-f 4792 . 2 (F:C–→B ↔ (F Fn C ran F B))
52, 3, 43bitr4g 279 1 (A = B → (F:C–→AF:C–→B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wss 3258  ran crn 4774   Fn wfn 4777  –→wf 4778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-f 4792
This theorem is referenced by:  feq23  5214  fconstg  5252  f1eq3  5256  fsng  5434  fsn2  5435  mapex  6007  mapvalg  6010  mapsn  6027
  Copyright terms: Public domain W3C validator