![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > funssxp | GIF version |
Description: Two ways of specifying a partial function from A to B. (Contributed by set.mm contributors, 13-Nov-2007.) |
Ref | Expression |
---|---|
funssxp | ⊢ ((Fun F ∧ F ⊆ (A × B)) ↔ (F:dom F–→B ∧ dom F ⊆ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 5136 | . . . . . 6 ⊢ (Fun F ↔ F Fn dom F) | |
2 | 1 | biimpi 186 | . . . . 5 ⊢ (Fun F → F Fn dom F) |
3 | rnss 4959 | . . . . . 6 ⊢ (F ⊆ (A × B) → ran F ⊆ ran (A × B)) | |
4 | rnxpss 5053 | . . . . . 6 ⊢ ran (A × B) ⊆ B | |
5 | 3, 4 | syl6ss 3284 | . . . . 5 ⊢ (F ⊆ (A × B) → ran F ⊆ B) |
6 | 2, 5 | anim12i 549 | . . . 4 ⊢ ((Fun F ∧ F ⊆ (A × B)) → (F Fn dom F ∧ ran F ⊆ B)) |
7 | df-f 4791 | . . . 4 ⊢ (F:dom F–→B ↔ (F Fn dom F ∧ ran F ⊆ B)) | |
8 | 6, 7 | sylibr 203 | . . 3 ⊢ ((Fun F ∧ F ⊆ (A × B)) → F:dom F–→B) |
9 | dmss 4906 | . . . . 5 ⊢ (F ⊆ (A × B) → dom F ⊆ dom (A × B)) | |
10 | dmxpss 5052 | . . . . 5 ⊢ dom (A × B) ⊆ A | |
11 | 9, 10 | syl6ss 3284 | . . . 4 ⊢ (F ⊆ (A × B) → dom F ⊆ A) |
12 | 11 | adantl 452 | . . 3 ⊢ ((Fun F ∧ F ⊆ (A × B)) → dom F ⊆ A) |
13 | 8, 12 | jca 518 | . 2 ⊢ ((Fun F ∧ F ⊆ (A × B)) → (F:dom F–→B ∧ dom F ⊆ A)) |
14 | ffun 5225 | . . . 4 ⊢ (F:dom F–→B → Fun F) | |
15 | 14 | adantr 451 | . . 3 ⊢ ((F:dom F–→B ∧ dom F ⊆ A) → Fun F) |
16 | fssxp 5232 | . . . 4 ⊢ (F:dom F–→B → F ⊆ (dom F × B)) | |
17 | xpss1 4856 | . . . 4 ⊢ (dom F ⊆ A → (dom F × B) ⊆ (A × B)) | |
18 | 16, 17 | sylan9ss 3285 | . . 3 ⊢ ((F:dom F–→B ∧ dom F ⊆ A) → F ⊆ (A × B)) |
19 | 15, 18 | jca 518 | . 2 ⊢ ((F:dom F–→B ∧ dom F ⊆ A) → (Fun F ∧ F ⊆ (A × B))) |
20 | 13, 19 | impbii 180 | 1 ⊢ ((Fun F ∧ F ⊆ (A × B)) ↔ (F:dom F–→B ∧ dom F ⊆ A)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ⊆ wss 3257 × cxp 4770 dom cdm 4772 ran crn 4773 Fun wfun 4775 Fn wfn 4776 –→wf 4777 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-ima 4727 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-fn 4790 df-f 4791 |
This theorem is referenced by: elpm2g 6014 |
Copyright terms: Public domain | W3C validator |