New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > funssxp | GIF version |
Description: Two ways of specifying a partial function from A to B. (Contributed by set.mm contributors, 13-Nov-2007.) |
Ref | Expression |
---|---|
funssxp | ⊢ ((Fun F ∧ F ⊆ (A × B)) ↔ (F:dom F–→B ∧ dom F ⊆ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 5137 | . . . . . 6 ⊢ (Fun F ↔ F Fn dom F) | |
2 | 1 | biimpi 186 | . . . . 5 ⊢ (Fun F → F Fn dom F) |
3 | rnss 4960 | . . . . . 6 ⊢ (F ⊆ (A × B) → ran F ⊆ ran (A × B)) | |
4 | rnxpss 5054 | . . . . . 6 ⊢ ran (A × B) ⊆ B | |
5 | 3, 4 | syl6ss 3285 | . . . . 5 ⊢ (F ⊆ (A × B) → ran F ⊆ B) |
6 | 2, 5 | anim12i 549 | . . . 4 ⊢ ((Fun F ∧ F ⊆ (A × B)) → (F Fn dom F ∧ ran F ⊆ B)) |
7 | df-f 4792 | . . . 4 ⊢ (F:dom F–→B ↔ (F Fn dom F ∧ ran F ⊆ B)) | |
8 | 6, 7 | sylibr 203 | . . 3 ⊢ ((Fun F ∧ F ⊆ (A × B)) → F:dom F–→B) |
9 | dmss 4907 | . . . . 5 ⊢ (F ⊆ (A × B) → dom F ⊆ dom (A × B)) | |
10 | dmxpss 5053 | . . . . 5 ⊢ dom (A × B) ⊆ A | |
11 | 9, 10 | syl6ss 3285 | . . . 4 ⊢ (F ⊆ (A × B) → dom F ⊆ A) |
12 | 11 | adantl 452 | . . 3 ⊢ ((Fun F ∧ F ⊆ (A × B)) → dom F ⊆ A) |
13 | 8, 12 | jca 518 | . 2 ⊢ ((Fun F ∧ F ⊆ (A × B)) → (F:dom F–→B ∧ dom F ⊆ A)) |
14 | ffun 5226 | . . . 4 ⊢ (F:dom F–→B → Fun F) | |
15 | 14 | adantr 451 | . . 3 ⊢ ((F:dom F–→B ∧ dom F ⊆ A) → Fun F) |
16 | fssxp 5233 | . . . 4 ⊢ (F:dom F–→B → F ⊆ (dom F × B)) | |
17 | xpss1 4857 | . . . 4 ⊢ (dom F ⊆ A → (dom F × B) ⊆ (A × B)) | |
18 | 16, 17 | sylan9ss 3286 | . . 3 ⊢ ((F:dom F–→B ∧ dom F ⊆ A) → F ⊆ (A × B)) |
19 | 15, 18 | jca 518 | . 2 ⊢ ((F:dom F–→B ∧ dom F ⊆ A) → (Fun F ∧ F ⊆ (A × B))) |
20 | 13, 19 | impbii 180 | 1 ⊢ ((Fun F ∧ F ⊆ (A × B)) ↔ (F:dom F–→B ∧ dom F ⊆ A)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ⊆ wss 3258 × cxp 4771 dom cdm 4773 ran crn 4774 Fun wfun 4776 Fn wfn 4777 –→wf 4778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fn 4791 df-f 4792 |
This theorem is referenced by: elpm2g 6015 |
Copyright terms: Public domain | W3C validator |