NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dffn2 GIF version

Theorem dffn2 5225
Description: Any function is a mapping into V. (The proof was shortened by Andrew Salmon, 17-Sep-2011.) (Contributed by set.mm contributors, 31-Oct-1995.) (Revised by set.mm contributors, 18-Sep-2011.)
Assertion
Ref Expression
dffn2 (F Fn AF:A–→V)

Proof of Theorem dffn2
StepHypRef Expression
1 ssv 3292 . . 3 ran F V
21biantru 491 . 2 (F Fn A ↔ (F Fn A ran F V))
3 df-f 4792 . 2 (F:A–→V ↔ (F Fn A ran F V))
42, 3bitr4i 243 1 (F Fn AF:A–→V)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  Vcvv 2860   wss 3258  ran crn 4774   Fn wfn 4777  –→wf 4778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-f 4792
This theorem is referenced by:  fnressn  5439  fnmpt2  5733  xpassen  6058
  Copyright terms: Public domain W3C validator