NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2albii GIF version

Theorem 2albii 1567
Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
albii.1 (φψ)
Assertion
Ref Expression
2albii (xyφxyψ)

Proof of Theorem 2albii
StepHypRef Expression
1 albii.1 . . 3 (φψ)
21albii 1566 . 2 (yφyψ)
32albii 1566 1 (xyφxyψ)
Colors of variables: wff setvar class
Syntax hints:  wb 176  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  mo4f  2236  2mos  2283  2eu4  2287  2eu6  2289  ralcomf  2770  axcnvprim  4092  axssetprim  4093  axsiprim  4094  axins2prim  4096  axins3prim  4097  ssrelk  4212  eqrelk  4213  cnvkexg  4287  ssetkex  4295  sikexlem  4296  sikexg  4297  insklem  4305  ins2kexg  4306  ins3kexg  4307  raliunxp  4824  ssopr  4847  cnvsym  5028  intasym  5029  intirr  5030  dffun2  5120  dffun4  5122  fun11  5160  fununi  5161  enmap2lem4  6067  enmap1lem4  6073
  Copyright terms: Public domain W3C validator