New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2albii | GIF version |
Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
2albii | ⊢ (∀x∀yφ ↔ ∀x∀yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀yφ ↔ ∀yψ) |
3 | 2 | albii 1566 | 1 ⊢ (∀x∀yφ ↔ ∀x∀yψ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: mo4f 2236 2mos 2283 2eu4 2287 2eu6 2289 ralcomf 2770 axcnvprim 4092 axssetprim 4093 axsiprim 4094 axins2prim 4096 axins3prim 4097 ssrelk 4212 eqrelk 4213 cnvkexg 4287 ssetkex 4295 sikexlem 4296 sikexg 4297 insklem 4305 ins2kexg 4306 ins3kexg 4307 raliunxp 4824 ssopr 4847 cnvsym 5028 intasym 5029 intirr 5030 dffun2 5120 dffun4 5122 fun11 5160 fununi 5161 enmap2lem4 6067 enmap1lem4 6073 |
Copyright terms: Public domain | W3C validator |