![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > 2albii | GIF version |
Description: Inference adding two universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
2albii | ⊢ (∀x∀yφ ↔ ∀x∀yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀yφ ↔ ∀yψ) |
3 | 2 | albii 1566 | 1 ⊢ (∀x∀yφ ↔ ∀x∀yψ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: mo4f 2236 2mos 2283 2eu4 2287 2eu6 2289 ralcomf 2769 axcnvprim 4091 axssetprim 4092 axsiprim 4093 axins2prim 4095 axins3prim 4096 ssrelk 4211 eqrelk 4212 cnvkexg 4286 ssetkex 4294 sikexlem 4295 sikexg 4296 insklem 4304 ins2kexg 4305 ins3kexg 4306 raliunxp 4823 ssopr 4846 cnvsym 5027 intasym 5028 intirr 5029 dffun2 5119 dffun4 5121 fun11 5159 fununi 5160 enmap2lem4 6066 enmap1lem4 6072 |
Copyright terms: Public domain | W3C validator |