| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ralbi | GIF version | ||
| Description: Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralbi | ⊢ (∀x ∈ A (φ ↔ ψ) → (∀x ∈ A φ ↔ ∀x ∈ A ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2665 | . 2 ⊢ Ⅎx∀x ∈ A (φ ↔ ψ) | |
| 2 | rsp 2675 | . . 3 ⊢ (∀x ∈ A (φ ↔ ψ) → (x ∈ A → (φ ↔ ψ))) | |
| 3 | 2 | imp 418 | . 2 ⊢ ((∀x ∈ A (φ ↔ ψ) ∧ x ∈ A) → (φ ↔ ψ)) |
| 4 | 1, 3 | ralbida 2629 | 1 ⊢ (∀x ∈ A (φ ↔ ψ) → (∀x ∈ A φ ↔ ∀x ∈ A ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 |
| This theorem is referenced by: uniiunlem 3354 iineq2 3987 |
| Copyright terms: Public domain | W3C validator |