NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralbi GIF version

Theorem ralbi 2751
Description: Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.)
Assertion
Ref Expression
ralbi (x A (φψ) → (x A φx A ψ))

Proof of Theorem ralbi
StepHypRef Expression
1 nfra1 2665 . 2 xx A (φψ)
2 rsp 2675 . . 3 (x A (φψ) → (x A → (φψ)))
32imp 418 . 2 ((x A (φψ) x A) → (φψ))
41, 3ralbida 2629 1 (x A (φψ) → (x A φx A ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by:  uniiunlem  3354  iineq2  3987
  Copyright terms: Public domain W3C validator