New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iinxsng | GIF version |
Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iinxsng.1 | ⊢ (x = A → B = C) |
Ref | Expression |
---|---|
iinxsng | ⊢ (A ∈ V → ∩x ∈ {A}B = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 3973 | . 2 ⊢ ∩x ∈ {A}B = {y ∣ ∀x ∈ {A}y ∈ B} | |
2 | iinxsng.1 | . . . . 5 ⊢ (x = A → B = C) | |
3 | 2 | eleq2d 2420 | . . . 4 ⊢ (x = A → (y ∈ B ↔ y ∈ C)) |
4 | 3 | ralsng 3766 | . . 3 ⊢ (A ∈ V → (∀x ∈ {A}y ∈ B ↔ y ∈ C)) |
5 | 4 | abbi1dv 2470 | . 2 ⊢ (A ∈ V → {y ∣ ∀x ∈ {A}y ∈ B} = C) |
6 | 1, 5 | syl5eq 2397 | 1 ⊢ (A ∈ V → ∩x ∈ {A}B = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2615 {csn 3738 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-sbc 3048 df-sn 3742 df-iin 3973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |