New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difss | GIF version |
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
difss | ⊢ (A ∖ B) ⊆ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3388 | . 2 ⊢ (x ∈ (A ∖ B) → x ∈ A) | |
2 | 1 | ssriv 3277 | 1 ⊢ (A ∖ B) ⊆ A |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3206 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-ss 3259 |
This theorem is referenced by: difssd 3394 difss2 3395 ssdifss 3397 disj4 3599 0dif 3621 uneqdifeq 3638 difsnpss 3851 unidif 3923 iunxdif2 4014 imagekrelk 4273 nnsucelr 4428 sfinltfin 4535 vfinncvntsp 4549 vfinspsslem1 4550 vfinncsp 4554 resdif 5306 sbthlem1 6203 |
Copyright terms: Public domain | W3C validator |