New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difss | GIF version |
Description: Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
difss | ⊢ (A ∖ B) ⊆ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3389 | . 2 ⊢ (x ∈ (A ∖ B) → x ∈ A) | |
2 | 1 | ssriv 3278 | 1 ⊢ (A ∖ B) ⊆ A |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3207 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 |
This theorem is referenced by: difssd 3395 difss2 3396 ssdifss 3398 disj4 3600 0dif 3622 uneqdifeq 3639 difsnpss 3852 unidif 3924 iunxdif2 4015 imagekrelk 4274 nnsucelr 4429 sfinltfin 4536 vfinncvntsp 4550 vfinspsslem1 4551 vfinncsp 4555 resdif 5307 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |