NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ineq12d GIF version

Theorem ineq12d 3459
Description: Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
ineq1d.1 (φA = B)
ineq12d.2 (φC = D)
Assertion
Ref Expression
ineq12d (φ → (AC) = (BD))

Proof of Theorem ineq12d
StepHypRef Expression
1 ineq1d.1 . 2 (φA = B)
2 ineq12d.2 . 2 (φC = D)
3 ineq12 3453 . 2 ((A = B C = D) → (AC) = (BD))
41, 2, 3syl2anc 642 1 (φ → (AC) = (BD))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214
This theorem is referenced by:  csbing  3463  nnsucelrlem3  4427  funprg  5150  funprgOLD  5151
  Copyright terms: Public domain W3C validator