New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbing | GIF version |
Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
csbing | ⊢ (A ∈ B → [A / x](C ∩ D) = ([A / x]C ∩ [A / x]D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3140 | . . 3 ⊢ (y = A → [y / x](C ∩ D) = [A / x](C ∩ D)) | |
2 | csbeq1 3140 | . . . 4 ⊢ (y = A → [y / x]C = [A / x]C) | |
3 | csbeq1 3140 | . . . 4 ⊢ (y = A → [y / x]D = [A / x]D) | |
4 | 2, 3 | ineq12d 3459 | . . 3 ⊢ (y = A → ([y / x]C ∩ [y / x]D) = ([A / x]C ∩ [A / x]D)) |
5 | 1, 4 | eqeq12d 2367 | . 2 ⊢ (y = A → ([y / x](C ∩ D) = ([y / x]C ∩ [y / x]D) ↔ [A / x](C ∩ D) = ([A / x]C ∩ [A / x]D))) |
6 | vex 2863 | . . 3 ⊢ y ∈ V | |
7 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]C | |
8 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]D | |
9 | 7, 8 | nfin 3231 | . . 3 ⊢ Ⅎx([y / x]C ∩ [y / x]D) |
10 | csbeq1a 3145 | . . . 4 ⊢ (x = y → C = [y / x]C) | |
11 | csbeq1a 3145 | . . . 4 ⊢ (x = y → D = [y / x]D) | |
12 | 10, 11 | ineq12d 3459 | . . 3 ⊢ (x = y → (C ∩ D) = ([y / x]C ∩ [y / x]D)) |
13 | 6, 9, 12 | csbief 3178 | . 2 ⊢ [y / x](C ∩ D) = ([y / x]C ∩ [y / x]D) |
14 | 5, 13 | vtoclg 2915 | 1 ⊢ (A ∈ B → [A / x](C ∩ D) = ([A / x]C ∩ [A / x]D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 [csb 3137 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: csbresg 4977 |
Copyright terms: Public domain | W3C validator |