| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ineq2d | GIF version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| ineq1d.1 | ⊢ (φ → A = B) |
| Ref | Expression |
|---|---|
| ineq2d | ⊢ (φ → (C ∩ A) = (C ∩ B)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 | . 2 ⊢ (φ → A = B) | |
| 2 | ineq2 3452 | . 2 ⊢ (A = B → (C ∩ A) = (C ∩ B)) | |
| 3 | 1, 2 | syl 15 | 1 ⊢ (φ → (C ∩ A) = (C ∩ B)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 ∩ cin 3209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
| This theorem is referenced by: rint0 3967 riin0 4040 cokeq2 4232 reseq2 4930 csbresg 4977 txpeq2 5781 |
| Copyright terms: Public domain | W3C validator |