New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > intsn | GIF version |
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.) |
Ref | Expression |
---|---|
intsn.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
intsn | ⊢ ∩{A} = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intsn.1 | . 2 ⊢ A ∈ V | |
2 | intsng 3962 | . 2 ⊢ (A ∈ V → ∩{A} = A) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩{A} = A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 Vcvv 2860 {csn 3738 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-sn 3742 df-pr 3743 df-int 3928 |
This theorem is referenced by: uniintsn 3964 intunsn 3966 |
Copyright terms: Public domain | W3C validator |